首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
排序方式: 共有15条查询结果,搜索用时 421 毫秒
1.
Host compatibility of different spore-positive (Sp+)and spore-negative (Sp?) strain types of Frankia from alder stands in Finland was studied in Modulation tests with hydrocultures of Alnus glutinosa (L.) Gaertner, A. incana (L.) Moench and A. nitida Endl. Root nodules and soil samples from stands of A. incana (Lammi forest and Hämeenlinna forest) were dominated by Sp + types of Frankia (coded AiSp+ and AiSp+ H. respectively), which caused effective root nodules in test plants of A. incana, but failed to induce nodules in A. nitida. In A. glutinosa Frankia strain types AiSp + and AiSp + H caused small, ineffective root nodules with sporangia (coded Ineff ?), which were recognized by the absence or near absence of vesicles in the nodule tissue. Ineffective nodules without sporangia (coded Ineff ?) were induced on A. glutinosa with soil samples collected at Lammi swamp. The spore-negative strain type of Frankia was common in root nodules of A. glutinosa in Finland (Lammi swamp) and caused effective Sp? type root nodules (coded AgSp ?) in hydrocultures of A. incana, A. glutinosa and A. nitida. A different Sp + strain type of Frankia. coded AgSp+ Finland, was occasionally found in stands of A. glutinosa. It was clearly distinguished from strain type AiSp + by the ability to produce effective nodules on both A. glutinosa and A. incana. The nodulation capacities of soil and nodule samples were calculated from the nodulation response in hydrocutlure and served as a measure for the population density of infective Frankia particles. Sp + nodules from both strain types had equal and high nodulation capacities with compatible host species. The nodulation capacities of Sp type root nodules from A. glutinosa were consistently low. High frequencies of Frankia AiSp+ and AiSp+ H were found in the soil environment of dominant AiSp + nodule populations on A. incana. The numbers of infective particles of this strain type were insignificant in the soil environment of nearby Sp ? nodule populations on A. glutinosa and in the former field at Hämeen-linna near the Sp+ nodule area in Hämeenlinna forest. Strain type AgSp? had low undulation capacity in the soil environment of both A. incana and A. glutinosa stands, Explanations for the strong associations between Frankia strain types AiSp+ and AiSp ? H and A. incana and between strain type AgSp? and A. glutinosa are discussed in the light of host specificity and of some characteristics of population dynamics of both strain types. The possible need to adapt the concept of Frankia strain types Sp + and Sp ? to strains with some variation in spore development was stressed by the low potentials of strain type AiSp + H to develop spores in symbioses with hydrocultures of A. incnna.  相似文献   
2.
We isolated and characterized an Alnus glutinosa cDNA clone, pAg13, which corresponds to a gene expressed at higher levels in nodules induced by Frankia than in roots. The deduced polypeptide sequence is rich in glutamic acid and proline and contains a putative signal peptide indicating an extracellular location of Ag13. In situ hybridization showed that ag13 is expressed in the pericycle of the nodule vascular bundle and in infected cells that exhibited degradation of the endosymbiont.  相似文献   
3.
Soils from seven sites on the island of Jamaica were assayed for the symbiotic diazotrophs Frankia and Rhizobium using serial dilutions. Most probable number and least squares regression methods were used to estimate each soil's capacity to nodulate native Myrica cerifera, exotic Leucaena leucocephala and exotic Casuarina cunninghamiana. The sample sites included a montane forest, a slash-and-burn agricultural site, reclaimed bauxite mining areas, abandoned sugar cane fields, and a garden plot. None of the host plants used in the bioassay were present on the sites sampled except for scattered L. leucocephala on one site. Frankia capable of nodulating M. cerifera, which is native to Jamaican highlands, occurred at all sites sampled. No C. cunninghamiana-infective Frankia was detected in soils sampled. Only soils from one site on the tropical coastal plain harbored rhizobia able to nodulate L. leucocephala (37 nodulation units cm?3 of soil). A subset of nodulated M. cerifera and L. leucocephala reduced acetylene to ethylene indicating nitrogenase activity. The slash-and-burn agricultural site, which was situated at an elevation of 200 m and possessed both high natural fertility and high soil moisture-supplying capacity, had significantly greater Myrica infectious capacity (1 000 nodulation units cm?3 of soil) than the other sites (7?207 nodulation units cm?3 of soil). A planned, paired comparison revealed that a recently cultivated sugar cane field and a recently reclaimed bauxite mining site together had significantly less Myrica-infective Frankia (4 nodulation units cm?3 of soil) than a corresponding pair of sites consisting of a sugar cane field abandoned for 25 years and a bauxite mining site reclaimed 20 years before sampling (118 nodulation units cm?3 of soil). Results indicate that Myrica-infective Frankia is widespread in Jamaica, that the number of Myrica-infective Frankia units vary from site to site in accordance with soil type and soil history, that Jamaican sites sampled lack soil Frankia populations capable of nodulating a casuarina host, that rhizobial symbionts capable of nodulating L. leucocephala may be geographically restricted to lowlands in Jamaica, and that the occurrence of Frankia in these soils is independent of host plant presence.  相似文献   
4.
Abstract The term ``actinorhiza' refers both to the filamentous bacteria Frankia, an actinomycete, and to the root location of nitrogen-fixing nodules. Actinorhizal plants are classified into four subclasses, eight families, and 25 genera comprising more than 220 species. Although ontogenically related to lateral roots, actinorhizal nodules are characterized by differentially expressed genes, supporting the idea of the uniqueness of this new organ. Two pathways for root infection have been described for compatible Frankia interactions: root hair infection or intercellular penetration. Molecular phylogeny groupings of host plants correlate with morphologic and anatomic features of actinorhizal nodules. Four clades of actinorhizal plants have been defined, whereas Frankia bacteria are classified into three major phylogenetic groups. Although the phylogenies of the symbionts are not fully congruent, a close relationship exists between plant and bacterial groups. A model for actinorhizal specificity is proposed that includes different levels or degrees of specificity of host-symbiont interactions, from fully compatible to incompatible. Intermediate, compatible, but delayed or limited interactions are also discussed. Actinorhizal plants undergo feedback regulation of symbiosis involving at least two different and consecutive signals that lead to a mechanism controlling root nodulation. These signals mediate the opening or closing of the window of susceptibility for infection and inhibit infection and nodule development in the growing root, independently of infection mechanism. The requirement for at least two molecular recognition steps in the development of actinorhizal symbioses is discussed.  相似文献   
5.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,254(1):139-153
Asparagine was found to be the main N compound exported from Discaria trinervis nodules. Aspartate (Asp), glutamate (Glu), alanine (Ala) and serine (Ser) were also detected in root xylem sap, but at lower concentrations. A comparable picture is found in nodulated alfalfa. We hypothesized that a similar set of enzymes for Asn synthesis was present in D. trinervis nodules. We demonstrate the expression of most of the enzymes involved in the synthesis of Asn from NH+ 4 and oxoacids, in nodules – but not in roots – of fully symbiotic D. trinervis. By complementation of enzyme assays (A) and immunodetection (I) we detected glutamane-synthetase (GSA, I), Asp-aminotransferase (AATA), malate-dehydrogenase (MDHA, I, at least two isoforms), Glu-dehydrogenase (GDHA), Glu-synthase (GOGATI) and Asn-synthetase (ASI). PEP-carboxylase (PEPC) activity was not detected. We previously shown that N acts as a negative regulator of nodulation and nodule growth, while P is a strong stimulator for nodule growth. We present data on the regulation of nodule N metabolism by altering, during 4 weeks, the availability of N, P and light in symbiotic D. trinervis. NH4NO3 (2 mM) induced inactivation and degradation of nodule GS, MDH and AS, but activation of GDH and AAT; the amount of nitrogenase components was not affected. A 10-fold increase in P supply did not greatly affect activity and amount of enzymes, suggesting that N metabolism is not P-limited in nodules. On the other hand, suppression of P supply induced an important reduction of nodule GS, GOGAT, MDH and AS protein levels, although nitrogenase was not affected. GDH was the only measured activity that was stimulated by limiting P supply. Shading plants did result in complete degradation of nitrogenase and partial degradation of GS, AS and nodule-specific MDH isoform, but GDH and AAT were activated. These results are discussed in connection with the regulation of nodulation and nodule growth in D. trinervis.  相似文献   
6.
Chaia  Eugenia 《Plant and Soil》1998,205(2):99-102
Frankia strain BCU110501 was isolated from root nodules of the native Patagonian actinorhizal plant Discaria trinervis. The strain was grown on BAP medium with sodium propionate or glucose as carbon sources. Colonies grown in nitrogen-free medium showed branched hyphae bearing polymorphic sporangia and vesicles, which were capable of nitrogen fixation. Old cultures produced a red pigment. The infectivity and effectivity of a Frankia strain isolated from Discaria on its own host, D. trinervis and also in D. chacaye, is reported for the first time. Frankia BCU110501 has physiological properties that are intermediate between categories proposed by Lechevalier et al. (1983) to classify Frankia.  相似文献   
7.
8.
Actinorhizal plants form a nodular, nitrogen-fixing root symbiosis with the actinomycete Frankia and are economically and ecologically important due to their ability to improve the nitrogen fertility of disturbed and infertile substrates. In this study, water-retentive polymer inoculum carriers were applied as a root dip. This treatment significantly increased nodulation and in some cases early growth of Alnus glutinosa (L.) Gaertn. and Casuarina equisetifolia var. equisetifolia Forst. & Forst. in a controlled environment and also of A. glutinosa under field conditions. Nodule number and nodule dry weight per plant were at least two to three times greater after 56 to 140 days for plants inoculated with Frankia carried in a water-retentive polymer base compared with plants inoculated with Frankia in water. Nodules on the roots of the plants that were inoculated with Frankia in a polymer slurry were distributed throughout the entire root system, rather than concentrated near the root collar. When amended with water-retentive polymers, actinorhizal plants inoculated with 5- to 10-fold lower titers of Frankia exhibited early growth and nodule numbers equal to or greater than those plants inoculated with standard titers without polymers. The water-retentive, superabsorbent polymers clearly increased the nodulation of two actinorhizal plant species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
O. Balboa  Guacolda Avila  P. Arce 《Protoplasma》1988,147(2-3):143-148
Summary Root nodulesTalguenea quinquenervia Gill et Hook (Rhamnaceae) are restricted to the middle region of the root cortex. The root endophyte possesses hyphae which are septate and vesicles. The vesicles are spherical and are continuous with that of the hyphae. The endophyte fine structure is similar to otherFrankia-induced root nodules.  相似文献   
10.
Summary AFrankia strain (ORS 021001) isolated fromCasuarina junghuhniana root nodules was shown to produce four type of structuresin vitro: vegetative hyphae, sporangiospores within sporangia, N2-fixing vesicles, and a fourth type of structure which is described in detail in this report. Structures of this latter type which we propose to call reproductive torulose hyphae: (RTH) result from enlargement and multiple segmentation of vegetative hyphae into torulose chaions of spore-like cells. RTH differ from sporangia in three major aspects: morphology, morphogenesis and outgrowth. RTH play an important role in survival and reproduction ofFrankia strain ORS 021001. Adding activated charcoal to the nutrient medium promotes the formation ofFrankia colonies orginating from RTH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号