首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   65篇
  国内免费   47篇
  2024年   2篇
  2023年   12篇
  2022年   9篇
  2021年   15篇
  2020年   35篇
  2019年   44篇
  2018年   34篇
  2017年   36篇
  2016年   27篇
  2015年   23篇
  2014年   46篇
  2013年   36篇
  2012年   20篇
  2011年   39篇
  2010年   24篇
  2009年   35篇
  2008年   26篇
  2007年   32篇
  2006年   24篇
  2005年   15篇
  2004年   19篇
  2003年   16篇
  2002年   17篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   6篇
  1987年   2篇
  1985年   11篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
1.
The process of H2S oxidation by the phototrophic bacteriaThiocapsa roseopersicina andChlorobium phaeobacteroides, respectively, was monitored using a Pt-glass-Ag0, Ag2S electrode combination without liquid junction. Due to the resulting pe(pH) and pH2S plottings three steps can be distinguished: oxidation of H2S to an S(0) state, oxidation of S (0) to SO4 2–, and oxidation of the remaining H2S directly to SO4 2–. Differences between the investigated bacteria exist with respect to their individual oxidation strategies.Thiocapsa apparently stops oxidizing H2S at pH2S 7.5 (e.g. 10–7.5M H2S) and shifts to the utilization of the intracellularly stored S (0). In contrastChlorobium utilizes its extracellularly stored sulfur parallel to the extracellular H2S fraction. The corresponding Pt-sensor responses (pe7 values) were found to be similar to the corresponding partial redox equilibria (p7 values) of H2S oxidation stoichiometries as proposed by Van Niel (1931) and Trüper (1964). It is concluded that the recording of pe enables investigators to understand (and control) in situ redox processes, independent of their thermodynamic equilibration, only bound to changes of electroactivity vs. sensor.  相似文献   
2.
Carbon disulfide (CS2) and carbonyl sulfide (COS) are colorless, foul-smelling, volatile sulfur compounds with biocidal properties. Some plants produce CS2 or COS or both. When used as an intercrop or forecrop, these plants may have agronomic potential in protecting other plants. Most of the factors which affect production of these plant-generated organic sulfides are unknown. We determined the effects of sulfate concentration, plant age, nitrogen fixation, drought stress, root injury (through cutting), and undisturbed growth on COS production in Leucaena retusa or Leucaena leucocephala and the effect of some of these factors on CS2 production in Mimosa pudica. In addition, we determined if organic sulfides were produced in all Leucaena species. When L. retusa and M. pudica seedlings were grown in a plant nutrient medium with different sulfate concentrations (50 to 450 mg SL-1), COS or CS2 from crushed roots generally increased with increasing sulfate concentration. COS production was highest (74 ng mg-1 dry root) for young L. retusa seedlings and declined to low amounts (<5 ng mg-1 dry root) for older seedlings. Nitrogen fixation reduced the amounts of COS or CS2 produced in L. leucocephala and M. pudica. Under conditions of undisturbed growth, root cutting, or drought stress, no COS production was detected in 4-to 8-weeks-old L. retusa plants. COS or CS2 or both was obtained from crushed roots or shoots of all 13 known Leucaena species.  相似文献   
3.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
4.
Fourteen lichens, 10 green algal lichens and four cyanolichens, as well as a cyanobacterium emitted significant quantities of H2S (0.01–0.04 pmol g dw–1 s–1) and DMS (0.005–0.025 pmol g dw–1 s–1) but were sinks for COS (0.015–0.14 pmol g dw–1 s–1). In contrast, exchange of CH3SH and CS2 were sporatic and inconsistent. Although some interspecific variation occurred for the first three gases, exchange rates were relatively uniform and were not influenced by irradiance conditions. In contrast to DMS and H2S emission, COS uptake was strongly influenced by degree of thallus hydration. Because lichen dominated systems cover extensive terrestrial habitats, COS uptake is potentially important in the world's sulfur budget.  相似文献   
5.
Greigite (Fe3S4) and pyrite (FeS2) particles in the magnetosomes of a many-celled, magnetotactic prokaryote (MMP), common in brackish-to-marine, sulfidic, aquatic habitats, contained relatively high concentrations of copper which ranged from about 0.1 to 10 atomic per cent relative to iron. In contrast, the greigite particles in the magnetosomes of a curved magnetotactic bacterium collected from the same sampling site did not contain significant levels of copper. The ability of the MMP to biomineralize copper within its magnetosomes appeared to be limited to that organism and dependent upon the site from which it was collected. Although the chemical mechanism and physiological function of copper accumulation in the magnetosomes of the MMP is unclear, the presence of copper is the first evidence that another transition metal ion could be incorporated in the mineral phase of the magnetosomes of a magnetotactic bacterium.Abbreviation MMP many-celled magnetotactic prokaryote  相似文献   
6.
Summary Plants and certain fungi respond to heavy metal toxicity with the induced synthesis of metal-binding peptides known as phytochelatins (PCs). With cadmium, PCs can bind the metal to form a low molecular weight PC-Cd complex and a high molecular weight PC-Cd-S2− complex. The sulfide ions enhance the stability and Cd-binding capacity of the metal chelate, and formation of this sulfide-containing complex is associated with enhanced tolerance to cadmium. Molecular analyses of two fission yeast mutants that fail to produce a wild type level of the PC-Cd-S2− complex have determined that a vacuolar membrane transporter and several enzymes of the purine biosynthesis pathway are necessary in vivo for formation of the PC- Cd-S2− complex. A model based on vacuolar sequestration of the PC-Cd complex by an ATP-binding cassette-type transporter and its subsequent maturation into the stable PC-Cd-S2− complex via the actions of two purine biosynthetic enzymes is described. Presented in the Session-in-Depth Bioremediation through Biotechnological Means at the 1993 Congress on Cell and Tissue Culture, San Diego, CA, June 5–9, 1993.  相似文献   
7.
Chen Chen  Shuhua Zhu 《Phyton》2023,92(4):1091-1107
Nitrosoglutathione (GSNO) and β-cyclodextrin (β-CD) exhibit positive roles in regulating fruit quality. However, there are few reports about the effects of GSNO and β-CD on enhancing storability and boosting nitric oxide (NO), hydrogen sulfide (H2S), and phenylpropane metabolism in fruits during storage. “Xintaihong” peach were treated with 0.5, 1.0, 1.5 mmol L−1 GSNO in 0.5% (w/v) β-CD solution (GSNO/β-CD). The effects of GSNO/β-CD on endogenous NO, H2S, and phenylpropane metabolism were investigated. Treatment with GSNO/β-CD increased the color difference of peach and inhibited the increase of respiratory intensity, weight loss, and relative conductivity. Treatment with 1.0 mmol L−1 GSNO/β-CD increased the nitric oxide synthase (NOS-like) activity and L-arginine content, thereby promoting the accumulation of endogenous NO. By improving the activities of L-cysteine desulfhydrylase (L-CD), O-acetylserine sulfur lyase (OAS-TL), serine acetyltransferase (SAT), GSNO/β-CD increased the content of endogenous H2S in peach. Treatment with GSNO/β-CD increased the activities of phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and cinnamic acid-4-hydroxylase (C4H), promoted the increase of total phenols, flavonoids, and lignin in peach. These results indicated that GSNO/β-CD treatment better maintained the quality of peach by improving the metabolism of endogenous NO, H2S, and phenylpropane during storage.  相似文献   
8.
【背景】海上油田见聚后产出水硫化物超标,影响到注聚水的配聚黏度,采用生物脱硫时,由于常规除硫菌难以适应除油后产出液的高温,使得脱硫效果不佳。【目的】分析海上采出液水处理过程的菌群结构,明确生物处理各节点的菌群构成变化;开展耐高温脱硫菌驯化筛选,获得耐高温的高效脱硫菌。【方法】采集来自胜利油田海三站的水样,以16S rRNA基因高通量测序技术分析样本菌群结构,并分别在不同温度(55、60和65℃)下的无机富集培养基中进行多轮转接驯化,结合常压室温等离子体(atmospheric and room temperature plasma, ARTP)诱变技术筛选获得耐高温的脱硫菌群,采用宏基因组测序技术分析富集菌群的组成,并测定其脱硫能力。【结果】处理前的采出液水样含有较多的嗜热菌和硫酸盐还原菌,如Thermodesulfovibrio、Pseudothermotoga、Thermolithobacter、Fervidobacterium、Thermovenabulales和Pseudomonas;以厌氧气浮除油工艺处理的出水中,嗜氢菌属(Hydrogenophilus)成为最主要的优势菌,...  相似文献   
9.
Virgin cores and production fluids were obtained from seven wells, ranging in depth from 805 ft to 14 492 ft, and examined for the presence of sulfate-reducing bacteria (SRB) using Rosenfeld's sulfate-reducing medium modified by using crude oil in place of lactate. Cores from an additional six wells, ranging in depth from 1160 ft to 13 337 ft were tested for SRB using the modified Rosenfeld medium and API-sulfate-reducing medium. Produced waters from five of the six wells were tested also. All of the eleven produced water samples were positive for SRB while H2S production was not detected from the core samples.  相似文献   
10.
Much of eastern Australia's coastal lowlands are underlain by Holocene sulfidic sediments. Large areas have been drained for agriculture. Drained, sulfidic sediments oxidize and produce highly acidic discharge (pH<4) with significant impacts on estuarine ecosystems. The rate of production of acid from drained floodplains is between 100 to 300 kg H2SO4 /ha/y and hundreds of tonnes of H2SO4 can be discharged in a single flood from the floodplain. Generation and export of acidity is controlled by the water balance of the floodplain, the characteristics of the drainage system and the distribution of sulfides. Evapotranspiration by native plants and crops plays a dominant role in the oxidation of sediments in dry periods. In wet periods, upland discharges to floodplains dominate the water balance. Drain spacing and drain depth are critical factors in the export of acidity into coastal streams. Amelioration of acidic outflows requires an understanding of the interaction between chemical and hydrological processes in sulfidic landscapes. Redesign of drainage systems to manage surface waters and reduce drain density with the treatment of drains with lime offer promise for treating acidic discharge and reducing impacts. Reflooding of drained, partially oxidized floodplains with freshwater may not be a panacea because of the large volumes of acid stored in the soil, a lack of labile organic matter in the sediments needed to reduce sulfate and irreversible changes to the soil due to oxidation. Tidal brackish water reflooding of unproductive acidified lowlands offers promise for rehabilitating wetlands. Sulfidic wetlands which are still undrained should remain so unless all acidic discharge can be treated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号