首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2010年   2篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.  相似文献   
2.
The galangal (the rhizome of Alpinia officinarum, Hance) is popular in Asia as a traditional herbal medicine. The present study reports that the galangal extract (GE) can potently inhibit fatty-acid synthase (FAS, E.C.2.3.1.85). The inhibition consists of both reversible inhibition with an IC50 value of 1.73?μg?dried?GE/ml, and biphasic slow-binding inactivation. Subsequently the reversible inhibition and slow-binding inactivation to FAS were further studied. The inhibition of FAS by galangin, quercetin and kaempferol, which are the main flavonoids existing in the galangal, showed that quercetin and kaempferol had potent reversible inhibitory activity, but all three flavonoids had no obvious slow-binding inactivation. Analysis of the kinetic results led to the conclusion that the inhibitory mechanism of GE is totally different from that of some other previously reported inhibitors of FAS, such as cerulenin, EGCG (epigallocatechin gallate) and C75.  相似文献   
3.
Acetylation and deacetylation reactions result in biologically important modifications that are involved in normal cell function and cancer development. These reactions, carried out by protein acetyltransferase enzymes, act by transferring an acetyl group from acetyl-coenzymeA (Ac-CoA) to various substrate proteins. Such protein acetylation remains poorly understood in Archaea, and has been only partially described. Information processing in Archaea has been reported to be similar to that in eukaryotes and distinct from the equivalent bacterial processes. The human N-acetyltransferase Ard1 (hArd1) is one of the acetyltransferases that has been found to be overexpressed in various cancer cells and tissues, and knockout of the hArd1 gene significantly reduces growth rate of the cancer cell lines. In the present study, we determined the crystal structure of Thermoplasma volcanium Ard1 (Tv Ard1), which shows both ligand-free and multiple ligand-bound forms, i.e.,Ac-CoA- and coenzyme A (CoA)-bound forms. The difference between ligand-free and ligand-bound chains in the crystal structure was used to search for the interacting residues. The re-orientation and position of the loop between β4 and α3 including the phosphate-binding loop (P-loop) were observed, which are important for the ligand interaction. In addition, a biochemical assay to determine the N-acetyltransferase activity of Tv Ard1 was performed using the T.volcanium substrate protein Alba (Tv Alba). Taken together, the findings of this study elucidate ligand-free form of Tv Ard1 for the first time and suggest multiple modes of binding with Ac-CoA and CoA.  相似文献   
4.
Although commonly related to nutrient deprivation, the cause of the formation of the necrotic core in the multicellular tumour spheroids is still a controversial issue. We propose a simple model for the cell ATP production that assumes glucose and lactate as the only fuel substrates, and describes the main reactions occurring in the glycolytic and the oxidative pathways. Under the key assumption that cell death occurs when ATP production falls to a critical level, we formulate a multiscale model that integrates the energy metabolism at the cellular level with the diffusive transport of the metabolites in the spheroid mass. The model has been tested by predicting the measurements of the necrotic radius obtained by Freyer and Sutherland (1986a) in EMT6/Ro spheroids under different concentrations of glucose and oxygen in the culture medium. The results appear to be in agreement with the hypothesis that necrosis is caused by ATP deficit.  相似文献   
5.
Tannic acid is a hydrolyzable tannin that exists in many widespread edible plants with a variety of biological activities. In this study, we found that tannic acid potently inhibited the activity of fatty acid synthase (FAS) in a concentration-dependent manner with a half-inhibitory concentration value (IC50) of 0.14 μM. The inhibition kinetic results showed that the inhibition of FAS by tannic acid was mixed competitive and noncompetitive manner with respect to acetyl-CoA and malonyl-CoA, but uncompetitive to NADPH. Tannic acid prevented the differentiation of 3T3-L1 pre-adipocytes, and thus repressed intracellular lipid accumulation. In the meantime, tannic acid decreased the expression of FAS and down-regulated the mRNA level of FAS and PPARγ during adipocyte differentiation. Further studies showed that the inhibitory effect of tannic acid did not relate to FAS non-specific sedimentation. Since FAS was believed to be a therapeutic target of obesity, these findings suggested that tannic acid was considered having potential in the prevention of obesity.  相似文献   
6.
3-Hydroxy-3-methylglutaryl coenzyme A (CoA) synthase (HMGCS) catalyzes the condensation of acetyl-CoA and acetoacetyl-CoA into 3-hydroxy-3-methylglutaryl CoA. It is ubiquitous across the phylogenetic tree and is broadly classified into three classes. The prokaryotic isoform is essential in Gram-positive bacteria for isoprenoid synthesis via the mevalonate pathway. The eukaryotic cytosolic isoform also participates in the mevalonate pathway but its end product is cholesterol. Mammals also contain a mitochondrial isoform; its deficiency results in an inherited disorder of ketone body formation. Here, we report high-resolution crystal structures of the human cytosolic (hHMGCS1) and mitochondrial (hHMGCS2) isoforms in binary product complexes. Our data represent the first structures solved for human HMGCS and the mitochondrial isoform, allowing for the first time structural comparison among the three isoforms. This serves as a starting point for the development of isoform-specific inhibitors that have potential cholesterol-reducing and antibiotic applications. In addition, missense mutations that cause mitochondrial HMGCS deficiency have been mapped onto the hHMGCS2 structure to rationalize the structural basis for the disease pathology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号