首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
System A, the Na(+)-dependent amino acid transport activity, is encoded by the ATA2 gene and up-regulated following partial hepatectomy (PH), and its competitive inhibition interferes with liver regeneration. Rabbit polyclonal antibody was raised against a portion of the ATA2 gene product followed by immunodetection of ATA2 in isolated liver plasma membrane and lysate. The level of ATA2 increased in the plasma membrane following PH, while the relatively high quantity of ATA2 found in liver lysate remained constant. We also have shown that Northern analysis of steady-state ATA2 mRNA revealed no significant change following PH. These data show that ATA2-mediated transport is not regulated by the steady-state level of ATA2 mRNA but is regulated by the amount of ATA2 and redistribution to the plasma membrane. We hypothesize that ATA2 activity is regulated by recruitment of ATA2 protein from an intracellular compartment. In addition, the pattern of expression of System A activity in oocytes, transport kinetics, and sensitivity to chemical modification indicate the presence of a second System A isoform in liver that differs substantially from ATA2.  相似文献   
2.
We have developed an oat cell-free apoptosis system to investigate the execution mechanisms of plant apoptosis. Cell extracts derived from oat tissues undergoing toxin (victorin)-induced apoptosis caused nuclear collapse and internucleosomal DNA fragmentation in isolated nuclei. Pharmacological studies revealed that cysteine protease, which is E-64-sensitive but insensitive to caspase-specific inhibitors, is a crucial component in the morphological change of isolated nuclei, and that nuclease and the cysteine protease act cooperatively to induce the apoptotic DNA laddering. Interestingly, this finding is contrasted with those in well-studied animal cell-free systems in which an apoptotic endonuclease is solely responsible for the DNA fragmentation.  相似文献   
3.
A major outcome from Taxol treatment is induction of tumor cell apoptosis. However, metabolic responses to Taxol-induced apoptosis are poorly understood. In this study, we hypothesize that alterations in specific amino acid transporters may affect the Taxol-induced apoptosis in breast cancer cells. In this case, the activity of the given transporter may serve as a biomarker that could provide a biological assessment of response to drug treatment. We have examined the mechanisms responsible for Taxol-induced neutral amino acid uptake by breast cancer cells, such as MCF-7, BT474, MDAMB231 and T47D. The biochemical and molecular studies include: (1) growth-inhibition (MTT); (2) transport kinetics: (3) substrate-specific inhibition; (4) effect of thiol-modifying agents NEM and NPM; (5) gene expression of amino acid transporters; and (6) apoptotic assays. Our data show that Taxol treatment of MCF-7 cells induced a transient increase in Na+-dependent transport of the neutral amino acid transporter B0 at both gene and protein level. This increase was attenuated by blocking the transporter in the presence of high concentrations of the substrate amino acid. Other neutral amino acid transporters such as ATA2 (System A) and ASC were not altered. Amino acid starvation resulted in the expected up-regulation of System A (ATA2) gene, but not for B0 and ASC. B0 was significantly down regulated. Taxol treatment had no significant effect on the uptake of arginine and glutamate as measured by System y+ and X GC respectively. Tunel assays and FACS cell cycle analysis demonstrated that both Taxol- and doxorubicin-induced upregulation of B0 transporter gene with accompanying increase in cell apoptosis, could be reversed partially by blocking the B0 transporter with high concentration of alanine, and/or by inhibiting the caspase pathway. Both Taxol and doxorubicin treatment caused a significant decrease in S-phase of the cell cycle. However, Taxol-induced an increase primarily in the G2 fraction while doxorubicin caused increase in G1/G0 together with a small increase in G2. In summary, our study showed that Taxol induced apoptosis in several breast cancer cells results in activation of amino acid transporter System B0 at both gene and protein level. Similar response was observed with another chemotherapeutic agent Doxorubicin, suggesting that this increase is in response to apoptosis, and not only due to changes in cell cycle related events. Drs. Wu and Shen contributed equally to this study.  相似文献   
4.
Chen WY  Ni Y  Pan YM  Shi QX  Yuan YY  Chen AJ  Mao LZ  Yu SQ  Roldan ER 《FEBS letters》2005,579(21):4692-4700
We investigated whether GABA activates phospholipase A2 (PLA2) during acrosomal exocytosis, and if the MEK-ERK1/2 pathway modulates PLA2 activation initiated by GABA, progesterone or zona pellucida (ZP). In guinea pig spermatozoa prelabelled with [14C]arachidonic acid or [14C]choline chloride, GABA stimulated a decrease in phosphatidylcholine (PC), and release of arachidonic acid and lysoPC, during exocytosis. These lipid changes are indicative of PLA2 activation and appear essential for exocytosis since inclusion of aristolochic acid (a PLA2 inhibitor) abrogated them, along with exocytosis. GABA activation of PLA2 seems to be mediated, at least in part, by diacylglycerol (DAG) and protein kinase C since inclusion of the DAG kinase inhibitor R59022 enhanced PLA2 activity and exocytosis stimulated by GABA, whereas exposure to staurosporine decreased both. GABA-, progesterone- and ZP-induced release of arachidonic acid and exocytosis were prevented by U0126 and PD98059 (MEK inhibitors). Taken together, our results suggest that PLA2 plays a fundamental role in agonist-stimulated exocytosis and that MEK-ERK1/2 are involved in PLA2 regulation during this process.  相似文献   
5.
Activities of aminopropyltransferases (spermidine synthase and spermine synthase) were inhibited by aurintricarboxylic acid (ATA). Spermidine synthase was slightly more sensitive to the inhibitor than spermine synthase. These inhibitions were not prevented by 0.15 M NaCl. Inhibition by ATA of spermidine synthase was ‘uncompetitive’ with respect to putrescine and that of spermine synthase was ‘non-competitive’ with respect to spermidine. When the amount of spermidine synthase or spermine synthase was varied, inhibition ratio hardly changed on either case implying no appreciable interaction between ATA and these enzymes.  相似文献   
6.
The transport of alanine by system A is an important source of carbons for the synthesis of glucose in the liver. Here, we show that the mRNA encoding the ubiquitously expressed isoform of the rat system A transporter (SAT2) is dramatically increased in liver following streptozotocin-induced diabetes. This increase in SAT2 mRNA is intensified in the gluconeogenic periportal hepatocytes and also in hepatocytes surrounding the central vein. SAT3, the more abundant system A mRNA isoform present in liver, is restricted to perivenous hepatocytes and is also increased following this treatment but to a much lesser extent than SAT2 mRNA. SN1, an abundant system N mRNA isoform expressed in both perivenous and periportal hepatocytes, is not affected by streptozotocin treatment. A pharmacological dose of glucagon also increased both SAT2 and SAT3 mRNA levels in liver while SN1 mRNA levels remained unaffected. These results indicate that the increase in system A activity observed in liver following experimentally induced diabetes or glucagon treatment is due to the selective increase in mRNAs encoding system A transporters.  相似文献   
7.
The filamentous fungus Monascus pilosus was genetically transformed with a reporter plasmid, pMS-1.5hp, by aurintricarboxylic acid (ATA) treatment to obtain an efficient red-pigment producing mutant. The transformation efficiency of Monascus pilosus was higher with the ATA-treatment than with either a non-restriction-enzyme-mediated integration (REMI) or a REMI method. This valid and convenient random mutagenesis method shows that ATA can be applied in fungi for efficient genetic transformation.  相似文献   
8.

Background

Nuclease activity present within respiratory tissues contributes to the rapid clearance of injected DNA and therefore may reduce the transfection activity of directly injected transgenes. Most gene transfer technologies transduce or transfect murine tissues more efficiently than corresponding primate tissues. Therefore, it is prudent to assess the utility of novel gene transfer strategies in both rodent and primate models before proceeding with further development.

Methods

This study analyzed the effects of ATA (a nuclease inhibitor) on the direct transfection of macaque and murine lung tissue; compared the levels of DNase activity in murine, primate, and human lung fluids; and tested the inhibitory activity of ATA on the DNase activity present in these samples. Fluorescent microspheres were used to detect areas of transfection in lung.

Results

Intratracheal administration of a nuclease inhibitor (ATA) with naked DNA (0.5 µg ATA/g body weight) enhanced direct transfection efficacy in macaque lung by over 86‐fold and by over 54‐fold in mouse lung. Hematoxylin and eosin staining showed no apparent tissue toxicity. Moreover, macaque, human, and mouse lung fluids were found to possess similar levels of DNase activity and this activity was inhibited by similar concentrations of ATA. The authors also successfully pioneered the use of carboxylate‐modified microsphere tracers to identify areas of transfection and/or treatment.

Conclusion

This work provides evidence that using direct nuclease inhibitors will enhance lung transfection and that nuclease activity is present in all lung fluids tested, which can be inhibited by the use of direct DNase inhibitors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
9.
The activity of brain ribosomal subunits was examined by measuring (a) the saturation of ribosomes with nascent polypeptides and the rates of release of completed chains; (b) interaction of the subunits with brain messenger RNA to form polysomal aggregates; (c) formation of polyphenylalanine in the presence of polyuridylic acid at high magnesium concentration and (d) inhibition by aurine tricarboxylic acid. The results showed that a portion of the subunits were defective in forming initiation complexes with brain messenger RNA, but translated polyuridylate efficiently. The subunits that did form polysomes were more competent than the heterologous systems (derived from Krebs ascites cells, reticulocytes or wheat germ) in carrying out reinitiations of brain mRNA translation.Both the homologous and the heterologous systems translated brain mRNA and synthesized the two brain specific proteins S-100 and the neuron specific enolase, indicating that each of the systems had all the necessary factors. However, homologous initiation factors, aminoacyl-tRNA synthetases and transfer RNAs were more effective, particularly at suboptimal concentrations. Our results suggest that discriminative translation of brain messenger RNA may take place based on relative proportions of required components in the reaction milieu rather than by the presence or absence of one or more special messenger RNA specific factors.  相似文献   
10.
Inhibition by aurinetricarboxylic acid (ATA) of glucose-6-phosphate (G6P) dehydrogenase was "competitive" with respect to G6P and "mixed type" with respect to NADP+. Inhibited enzyme bound two molecules of ATA. Kinetic constants, Km, Ki at varying pH suggested possible binding of the inhibitor by the sulfhydryl of the enzyme; of the several enzymes tested only milk xanthine oxidase and G6P dehydrogenase from bovine adrenal was inhibited by ATA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号