首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
  国内免费   1篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   15篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   15篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
1.
Glutamine Transport in Mouse Cerebral Astrocytes   总被引:1,自引:0,他引:1  
Abstract: We measured initial influx and exchange of [14C]glutamine in primary astrocyte cultures in the presence and absence of Na+. Kinetic analysis of transport in Na+-free solution indicated two saturable Na+-independent components, one of which was identifiable functionally as system L1 transport. In the presence of Na+, multiple hyperbolic components were not resolvable from the kinetic data. Nevertheless, other evidence supported participation by at least three Na+-dependent neutral amino acid transporters (systems A, ASC, and N). System A transport of glutamine was usually absent or minimal, based on lack of inhibition by α-(methylamino)isobutyric acid. However, vigorous system A-mediated transport emerged after derepression by substrate deprivation. Participation by system ASC was indicated by trans-acceleration of Na+-dependent uptake, preferential inhibition of an Li+-intolerant component of uptake by cysteine, and inhibition by cysteine of a component resistant to inhibition by histidine and α-(methylamino)isobutyric acid. Because nonsaturable transport of glutamine appeared negligible, and system L transport of glutamine was suppressed in the presence of Na+, low-affinity system ASC transport may be the major route of export of glutamine from astrocytes. At 700 µ M glutamine, the primary uptake route was system N transport, identified on the basis of selective inhibition by histidine and asparagine, pH sensitivity, and tolerance of Li+ in place of Na+.  相似文献   
2.
Using steady-state relaxation spectrophotometric technique a P700 component (t 12 ~20 ms) has been detected which was sensitized by low concentration (10?7M) DCMU in isolated broken chloroplasts of pea. The relative quantum yield of electron flux through DCMU-sensitized P700 was similar to that with methyl viologen or NADP as terminal electron acceptor and water as electron donor. Kinetic analysis showed that a small fraction (10%) of the total P700 reaction centers was sensitized by low DCMU.  相似文献   
3.
Mesenchymal stromal/stem cells (MSCs) derived from bone marrow, umbilical cord and especially adipose tissue are increasingly being explored for their therapeutic potential to treat a wide variety of diseases. A prerequisite for most allogeneic off-the-shelf and some autologous MSC therapies is the ability to safely and efficiently cryopreserve cells during production or for storage prior to treatment. Dimethyl sulfoxide (Me2SO) is still the commonly used gold standard cryoprotectant (CPA). However, undesirable cellular impacts and side effects of Me2SO have led to an increasing demand for the development of safe and effective alternatives.This study investigated the effect of pentaisomaltose as a CPA for cryopreservation of adipose-derived stromal/stem cells (ASCs). We compared pentaisomaltose-based freezing media containing 1% Me2SO (PIM1) or 2% Me2SO (PIM2) to our in-house freezing media formulation containing 10% Me2SO (STD10) and to CryoStor freezing media containing 2% or 10% Me2SO (CS2 and CS10). We assessed the recovery of viable ASCs, their phenotype, differentiation potential, proliferation potential, and migratory potential. Further, their immunomodulatory potential was assessed by measuring their ability to suppress T cell proliferation and express immunomodulatory markers.The results showed that the post-thaw viability of ASCs cryopreserved with STD10, CS10 and PIM2 was improved compared to that of CS2. The recovery of ASCs with PIM1 and PIM2 was also improved compared to that of CS2. Proliferation and migration were comparable among the tested freezing media. The results showed no difference in the induction of PDL1, PDL2 or IDO1 expression. Nevertheless, the potential of cryopreserved ASCs to suppress T cell proliferation was reduced when the Me2SO concentration was reduced (CS10>STD10>CS2 and PIM2>PIM1).Altogether, the migratory and immunomodulatory potential combined with improved recovery indicate that the addition of pentaisomaltose in the freezing media may allow for the reduction of the Me2SO concentration to 2% while retaining a more potent cell product that what is recovered using comparable freezing media. With the desire to reduce the amount of Me2SO, these results suggest that 2% and potentially even 1% Me2SO in combination with 10% pentaisomaltose could be an effective and less toxic alternative to comparable freezing media.  相似文献   
4.
颗粒物(PM)对呼吸系统、心血管系统、神经系统和免疫系统均有损害,但目前关于吸入颗粒物对生殖损伤的研究较少。本研究旨在探讨细颗粒物(PM2.5)短期暴露对大鼠子宫炎症损伤及其作用机制。PM2.5暴露30 d后,高剂量组大鼠的子宫脏器系数、内膜上皮细胞厚度和腺上皮高度均明显高于对照组(P<0.05),抑制剂MCC950则能明显降低PM2.5对子宫的影响。子宫组织免疫荧光双染色结果显示,PM2.5暴露组子宫内CD45白细胞和CD11b巨噬细胞均明显增加(P<0.05)。Elisa法检测子宫组织和血清中白介素1β(IL-1β)和转化生长因子-β1(TGF-β1),暴露组子宫组织和血清中IL-1β和TGF-β1含量明显升高(P<0.05)。Western印迹法检测结果显示,PM2.5上调核苷酸结合低聚体结构域样受体3 (NLRP3)、凋亡相关斑点样蛋白质(ASC)、pro-IL-1β、pro-Caspase-1和半胱氨酸天冬氨酸蛋白酶-1(Caspase-1)的蛋白质表达量(P<0.05)。与高剂量组相比,NLRP3抑制剂MCC950能明显降低NLRP3/Caspase-1通路中关键蛋白质表达水平(P<0.05)。综上,PM2.5通过激活NLRP3/ Caspase-1信号,诱导大鼠子宫炎症反应,为PM2.5生殖毒性预防和治疗提供理论基础。  相似文献   
5.
Platelets play a critical role in the pathophysiology of peripheral arterial disease (PAD). The mechanisms by which muscle ischemia regulates aggregation of platelets are poorly understood. We have recently identified the Nod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) expressed by platelets as a critical regulator of platelet activation and aggregation, which may be triggered by activation of toll-like receptor 4 (TLR4). In this study, we performed femoral artery ligation (FAL) in transgenic mice with platelet-specific ablation of TLR4 (TLR4 PF4) and in NLRP3 knockout (NLRP3?/?) mice. NLRP3 inflammasome activity of circulating platelets, as monitored by activation of caspase-1 and cleavage of interleukin-1β (IL-1β), was upregulated in mice subjected to FAL. Genetic ablation of TLR4 in platelets led to decreased platelet caspase 1 activation and platelet aggregation, which was reversed by the NLRP3 activator Nigericin. Two weeks after the induction of FAL, ischemic limb perfusion was increased in TLR4 PF4 and NLRP3?/? mice as compared to control mice. Hence, activation of platelet TLR4/NLRP3 signaling plays a critical role in upregulating platelet aggregation and interfering with perfusion recovery in muscle ischemia and may represent a therapeutic target to improve limb salvage.  相似文献   
6.
The PYRIN domain is a conserved sequence motif identified in more than 20 human proteins with putative functions in apoptotic and inflammatory signalling pathways. The three-dimensional structure of the PYRIN domain from human ASC was determined by NMR spectroscopy. The structure determination reveals close structural similarity to death domains, death effector domains, and caspase activation and recruitment domains, although the structural alignment with these other members of the death-domain superfamily differs from previously predicted amino acid sequence alignments. Two highly positively and negatively charged surfaces in the PYRIN domain of ASC result in a strong electrostatic dipole moment that is predicted to be present also in related PYRIN domains. These results suggest that electrostatic interactions play an important role for the binding between PYRIN domains. Consequently, the previously reported binding between the PYRIN domains of ASC and ASC2/POP1 or between the zebrafish PYRIN domains of zAsc and Caspy is proposed to involve interactions between helices 2 and 3 of one PYRIN domain with helices 1 and 4 of the other PYRIN domain, in analogy to previously reported homophilic interactions between caspase activation and recruitment domains.  相似文献   
7.
8.
9.
The possible involvement of glucose (Glc) carriers in the uptake of vitamin C in plant cells is still a matter of debate. For the first time, it was shown here that plant cells exclusively take up the oxidised dehydroascorbate (DHA) form. DHA uptake is not affected by 6-bromo-6-deoxy-ascorbate, an ascorbate (ASC) analogue, specifically demonstrating ASC uptake in animal cells. There is no competition between Glc and DHA uptake. Moreover, DHA and Glc carriers respond in the opposite manner to different inhibitors (cytochalasin B, phloretin and genistein). In conclusion, the plant plasma membrane DHA carrier is distinct from the plant Glc transporters.  相似文献   
10.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号