首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFβ1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFβ signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.  相似文献   
2.
The plakin protein family serves to connect cell-cell and cell-matrix adhesion molecules to the intermediate filament cytoskeleton. Desmoplakin (DP) is an integral part of desmosomes, where it links desmosomal cadherins to the intermediate filaments. The 1056-amino-acid N-terminal region of DP contains a plakin domain common to members of the plakin family. Plakin domains contain multiple copies of spectrin repeats (SRs). We determined the crystal structure of a fragment of DP, residues 175-630, consisting of four SRs and an inserted SH3 domain. The four repeats form an elongated, rigid structure. The SH3 domain is present in a loop between two helices of an SR and interacts extensively with the preceding SR in a manner that appears to limit inter-repeat flexibility. The intimate intramolecular association of the SH3 domain with the preceding SR is also observed in plectin, another plakin protein, but not in α-spectrin, suggesting that the SH3 domain of plakins contributes to the stability and rigidity of this subfamily of SR-containing proteins.  相似文献   
3.
Arrhythmogenic right ventricular dysplasia/cardiomyopathy type 2 (ARVD2, OMIM 600996) and stress-induced polymorphic ventricular tachycardia (VTSIP, OMIM 604772) are two cardiac diseases causing juvenile sudden death, both associated with mutations in the RyR2 calcium channel. By using a quantitative yeast two-hybrid system, we show that VTSIP- and ARVD2-associated point mutations influence positively and negatively, respectively, the binding of RyR2 to its gating protein FKBP12.6. These findings suggest that ARVD2 mutations increase RyR2-mediated calcium release to cytoplasm, while VTSIP mutations do not affect significantly cytosolic calcium levels, thereby explaining the clinical differences between the two diseases. The present two-hybrid system appears to be an efficient molecular tool to assay the binding of FKBP12s proteins to both cardiac RyR2 and skeletal muscle RyR1 isoforms, circumventing the full-length expression of this class of giant channels. We also provide evidence of the suitability of this system to test new drugs that target RyRs-FKBP12s interactions and do not affect yeast growth.  相似文献   
4.
Ryanodine receptors (RyRs) are large tetrameric calcium (Ca2 +) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca2 + sensitivity, propagating sarcoplasmic reticulum luminal Ca2 + release in the process of excitation–contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.e., residues 1–559) are located in the putative interfaces mediating tetrameric channel assembly, the precise structural and dynamical consequences of the mutations are not well understood. We used solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to examine the effect of ARVD2-associated (i.e., R176Q) and CPVT-associated [i.e., P164S, R169Q and delta exon 3 (Δ3)] mutations on the structure and dynamics of RyR2A. Our solution NMR data exposed a mobile α-helix, unique to type 2; further, this α2 helix rescues the β-strand lost in RyR2A Δ3 but remains dynamic in the hot-spot loop (HS-loop) P164S, R169Q and R176Q mutant proteins. Docking of our X-ray crystal/NMR hybrid structure into the RyR1 cryo-electron microscopy map revealed that this RyR2A α2 helix is in close proximity to dense “columns” projecting toward the channel pore. This is in contrast to the HS-loop mutations that cause structural changes largely localized to the intersubunit interface between adjacent ABC domains. Taken together, our data suggest that ARVD2 and CPVT mutations have at least two distinct structural consequences linked to channel dysfunction: perturbation of the HS-loop (i.e., domain A):domain B intersubunit interface and disruption of the communication between the N-terminal region and the channel domain.  相似文献   
5.

Objective

Among the inherited cardiomyopathies, Arrhythmogenic right ventricular dysplasia/cardiomyopathy is unique with a peculiar pathology of fibro-fatty replacement. Studies have been carried out all over the world and several groups have reported clinical heterogeneity in manifestation of ARVD/C related symptoms. Present study is an attempt to identify the clinical profile of ARVD/C patients from Asian Indian origin.

Methods

31 patients in the span of three years were diagnosed with ARVD/C. Diagnosis was based on proposed task force criteria.

Results

The mean age at diagnosis was 32.9 ± 16.4 years with slight tilt in male to female ratio (1.46). About 80% cases had palpitations, syncope in 45.16% and dyspnea in 22.5%, whereas 16% of patients were asymptomatic. About 50% of patients revealed a family history of confirmed ARVD/C or sudden death of a family member without any known cause. ECG showed T-wave inversion in about 60% cases, prolongation of QRS was observed in 20% cases. RV dilatation was observed in 80% of patients and 66.7% showed systolic dysfunction. RV free wall motion abnormalities were found in 33% patients. Most of the early onset cases with less than 30 years of age showed family history indicative of ARVD/C. Familial study in three patients indicated early onset of condition in younger generations in two families.

Conclusions

ARVD/C in India shows relatively early age at onset when compared with other Asian populations with more than half of patients showing the disease below the age of 30 years. History in most of the early onset cases revealed family history indicating strong genetic influence.  相似文献   
6.
Ryanodine receptor (RyR) is the Ca2+-induced Ca2+ release channel in cells. RyR1 and RyR2 are its isoforms expressed in the skeletal and cardiac muscles, respectively. Their missense mutations, which are clustered in three regions that correspond to each other, cause hereditary disorders such as malignant hyperthermia and central core disease in skeletal muscle and catecholaminergic polymorphic ventricular tachycardia in cardiac muscle. Their pathogeneses, however, are not well understood. The following hypotheses are favorably discussed in this article: phenotypes with RyR1 and RyR2 mutations are mainly caused by dysregulations of their functions through the interdomain interaction and luminal Ca2+, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号