首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  2018年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or ‘boom/bust'' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P⩽0.005). Associations observed between bacteria and viruses (P⩽0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%–0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a ‘mean'' microbial community set by longer-term controlling factors.  相似文献   
2.
Hamelin Pool in Western Australia is one of the two major sites in the world with active marine stromatolite formation. Surrounded by living smooth and pustular mats, these ancient laminated structures are associated with cyanobacterial communities. Recent studies have identified a wide diversity of bacteria and archaea in this habitat. By understanding and evaluating the microbial diversity of this environment we can obtain insights into the formation of early life on Earth, as stromatolites have been dated in the geological record as far back as 3.5 billion years. Automated ribosomal intergenic spacer analysis (ARISA) patterns were shown to be a useful method to genetically discriminate halophilic archaea within this environment. Patterns of known halophilic archaea are consistent, by replicate analysis, and the halophilic strains isolated from stromatolites have novel intergenic spacer profiles. ARISA–PCR, performed directly on extracted DNA from different sample sites, provided significant insights into the extent of previous unknown diversity of halophilic archaea within this environment. Cloning and sequence analysis of the spacer regions obtained from stromatolites confirmed the novel and broad diversity of halophilic archaea in this environment.  相似文献   
3.
Sixty-nine endospore-forming bacterial endophytes consisting of 15 different species from five genera were isolated from leaves, pods, branches, and flower cushions of Theobroma cacao as potential biological control agents. Sixteen isolates had in vitro chitinase production. In antagonism studies against cacao pathogens, 42% inhibited Moniliophthora roreri, 33% inhibited Moniliophthora perniciosa, and 49% inhibited Phytophthora capsici. Twenty-five percent of isolates inhibited the growth of both Moniliophthora spp., while 22% of isolates inhibited the growth of all three pathogens. Isolates that were chitinolytic and tested negative on Bacillus cereus agar were tested with in planta studies. All 14 isolates colonized the phyllosphere and internal leaf tissue when introduced with Silwet L-77, regardless of the tissue of origin of the isolate. Eight isolates significantly inhibited P. capsici lesion formation (p = 0.05) in detached leaf assays when compared to untreated control leaves. ARISA with bacilli specific primers amplified 21 OTUs in field grown cacao leaves, while eubacteria specific primers amplified 58 OTUs. ARISA analysis of treated leaves demonstrated that inundative application of a single bacterial species did not cause a long-term shift of native bacterial communities. This research illustrates the presence of endospore-forming bacterial endophytes in cacao trees, their potential as antagonists of cacao pathogens, and that cacao harbors a range of bacterial endophytes.  相似文献   
4.
Bacterial community structure and diversity of Tunisian agricultural soil treated with different amounts of municipal solid waste compost (MSWC) and other fertilizers were studied using DGGE and ARISA fingerprinting methods. Sequence analysis of dominant DGGE bands revealed the presence of three major clusters, Cytophaga/Flexibacter/Bacteroides (CFB) group, Proteobacteria and Acidobacteria group. Using ARISA profiles, dominant populations were assigned to low and high GC Gram positive bacteria, Cyanobacteria, Spirochetes and Cytophagales. The two methods revealed the absence of significant bacterial community shifts related to the different MSWC applications. Moreover, indigenous bacterial population of the used loam-clayey soil was observed to limit proliferation and survival of Proteobacteria, initially dominant in MSWC and farmyard manure. Effectiveness of the two methods for soil bacterial community studying was shown. While DGGE was more accurate for bacterial identification, ARISA was more practical for handling and rapid estimation of dominant bacteria.  相似文献   
5.
We tested the accuracy of molecular analyses for recovering the species richness and structure of pooled fungal communities of known composition. We constructed replicate pools of 2-20 species and analysed these pools by two separate pooling-DNA extraction procedures and three different molecular analyses (Automated Ribosomal Intergenic Spacer Analysis (ARISA), terminal restriction fragment length polymorphism (T-RFLP) and clone library-sequencing). None of the methods correctly described the known communities. Only clone library-sequencing with high sequencing per pool (~100 clones) recovered reasonable estimates of richness. Frequency data were skewed with all procedures and analyses. These results indicate that the error introduced by pooling samples is significant and problematic for ecological studies of fungal communities.  相似文献   
6.
Polymerase chain reaction (PCR)‐based ‘fingerprinting’ methods, such as Terminal restriction fragment length polymorphism, Length Heterogeneity‐Polymerase Chain Reaction (LH‐PCR) and Automated Ribosomal Intergenic Spacer Analysis (ARISA) make possible quantitative studies of microbial community structure and dynamics. Here we outline a strategy for the rapid and cost‐effective isolation of 16S clones corresponding to particular fragment sizes in a fingerprint, based on applying the fingerprinting method to pools of colonies from a clone library. This allows the definitive identification of taxa responsible for the most important bands in the community fingerprint from a full 16S sequence. It offers significant advantages over random selection of clones and removes a significant barrier to the use of these methods.  相似文献   
7.
The extent to which non-host-associated bacterial communities exhibit small-scale biogeographic patterns in their distribution remains unclear. Our investigation of biogeography in bacterial community composition and function compared samples collected across a smaller spatial scale than most previous studies conducted in freshwater. Using a grid-based sampling design, we abstracted 100+ samples located between 3.5 and 60 m apart within each of three alpine ponds. For every sample, variability in bacterial community composition was monitored using a DNA-fingerprinting methodology (automated ribosomal intergenic spacer analysis) whereas differences in bacterial community function (that is, carbon substrate utilisation patterns) were recorded from Biolog Ecoplates. The exact spatial position and dominant physicochemical conditions (for example, pH and temperature) were simultaneously recorded for each sample location. We assessed spatial differences in bacterial community composition and function within each pond and found that, on average, community composition or function differed significantly when comparing samples located >20 m apart within any pond. Variance partitioning revealed that purely spatial variation accounted for more of the observed variability in both bacterial community composition and function (range: 24–38% and 17–39%) than the combination of purely environmental variation and spatially structured environmental variation (range: 17–32% and 15–20%). Clear spatial patterns in bacterial community composition, but not function were observed within ponds. We therefore suggest that some of the observed variation in bacterial community composition is functionally ‘redundant''. We confirm that distinct bacterial communities are present across unexpectedly small spatial scales suggesting that populations separated by distances of >20 m may be dispersal limited, even within the highly continuous environment of lentic water.  相似文献   
8.
Pseudo‐nitzschia‐specific PCR primers (PnAll F/R) were designed to amplify a polymorphic region of the internal transcribed spacer 1 (ITS1) from at least 11 Pseudo‐nitzschia species. The primers were used to generate environmental clone libraries from Puget Sound, Washington, and Vancouver Island, British Columbia, to confirm that the primers were specific for Pseudo‐nitzschia and to determine the extent of ITS1 sequence diversity within individual species. All environmental ITS1 sequences generated with PnAll primers displayed the greatest similarity to known Pseudo‐nitzschia ITS1 sequences. The length of cloned ITS1 fragments differed among species but was conserved within a species. Intraspecific genotypes exhibited <3% sequence divergence for seven of the 10 species detected in clone libraries. Several ITS1 genotypes unique to the Pacific Northwest were identified in environmental samples, and other genotypes were more broadly distributed. The Pseudo‐nitzschia primers were also used to develop an automated ribosomal intergenic spacer analysis (ARISA) to rapidly identify Pseudo‐nitzschia species in environmental samples based on species‐specific variation in the length of the targeted ITS1 region. The ARISA peaks were then associated with the environmental clone sequences for Pseudo‐nitzschia species. Surveying the genetic composition of communities at both the inter‐ and intraspecific levels will enhance our understanding of Pseudo‐nitzschia bloom dynamics.  相似文献   
9.
We identified and investigated the potential toxicity of oceanic Pseudo‐nitzschia species from Ocean Station Papa (OSP), located in a high‐nitrate, low‐chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. Despite their relatively low abundances in the indigenous phytoplankton assemblage, Pseudo‐nitzschia species richness is high. The morphometric characteristics of five oceanic Pseudo‐nitzschia isolates from at least four species are described using SEM and TEM. The species identified are Pseudo‐nitzschia dolorosa Lundholm et Moestrup, P. granii Hasle, P. heimii Manguin, and P. cf. turgidula (Hust.) Hasle. Additional support for the taxonomic classifications based on frustule morphology is provided through the sequencing of the internal transcribed spacer 1 (ITS1) rDNA. Pseudo‐nitzschia species identification was also assessed by the construction of ITS1 clone libraries and using automated ribosomal intergenic spacer analysis (ARISA) for environmental samples collected during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES), conducted in close proximity to OSP in July of 2002. Based on ITS1 sequences, the presence of P. granii, P. heimii, P. cf. turgidula, and at least five other putative, unidentified Pseudo‐nitzschia ITS1 variants was confirmed within iron‐enriched phytoplankton assemblages at OSP. None of the oceanic isolates produced detectable levels of particulate domoic acid (DA) when in prolonged stationary phase due to silicic acid starvation. The lack of detectable concentrations of DA suggests that either these strains produce very little or no toxin, or that the physiological conditions required to promote particulate DA production were not met and thus differ from their coastal, toxigenic congeners.  相似文献   
10.
In this study we investigated under laboratory conditions, the combined effect of the presence of two contaminants (Cu and PAHs) and plants (Halimione portulacoides) on a salt marsh microbial community, in terms of genetic structure, abundance and capacity to remove those contaminants. Plants changed the microbial community structure (evaluated by ARISA), but only in the treatments without PAHs. Also, in the presence of plants, Cu displayed lower toxicity (ToxScreen test) than in its absence. Nevertheless, the presence of plants interfered with the degradation (decreasing it up to 45%) of higher molecular weight PAHs by sediment microorganisms. This was in agreement with the lower microbial numbers (quantified by DAPI) observed in the presence of the plants, pointing for a competition between plants and microorganisms for nutrients. These results are new for salt marshes, and highlight the need for fertilization in order to obtain optimal effects of rhizoremediation for this type of compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号