首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   1篇
  国内免费   2篇
  108篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   19篇
  2013年   11篇
  2012年   10篇
  2011年   32篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
2.
The antioxidative response of grapevine leaves (Vitis vinifera cv. Trebbiano) affected by the presence of grapevine fanleaf virus was studied during the summer of 2010 at three different harvest times (July 1st and 26th, and August 30th). At the first and second harvest, infected leaves showed increases in the concentration of superoxide radical and hydrogen peroxide, the latter increasing for enhanced activity of superoxide dismutase. In contrast, at the last harvest time, increases in the ascorbate pool and ascorbate peroxidase activity maintained hydrogen peroxide to control levels. The glutathione pool was negatively affected as summer progressed, showing a decrease in its total and reduced form amounts. At the same time, increases in the ascorbate pool were observed, making antioxidant defenses of grapevine effective also at the last harvest time. Increases in phenolic acids, and in particular in p-hydroxybenzoic acid, at the first and second harvest might have enhanced the efficiency of the antioxidant system through an interrelation between a peroxidase/phenol/ascorbate system and the NADPH/glutathione/ascorbate cycle. The lack of increase in p-hydroxybenzoic acid at the third harvest could be due instead to the enhanced utilization of this acid for hydrogen peroxide detoxification. With time, grapevine plants lost their capacity to contrast the spread of grapevine fanleaf virus, but acquired a greater ability to counteract pathogen-induced oxidative stress, being endowed with more reduced antioxidant pools.  相似文献   
3.
外源SOD和APX基因在转基因烟草中的表达与遗传   总被引:3,自引:0,他引:3  
分析转超氧化物歧化酶基因(SOD)或抗坏血酸过氧化物酶基因(APX)烟草及其自交和杂交后代的叶片中超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的结果表明:转基因烟草的SOD和POD活性在终花期最强,不同叶位叶中SOD活性差异不明显,POD活性以下部叶为最高;转基因烟草的SOD或POD活性显著高于近等基因的非转基因品系。杂交后代(F1、F2)的SOD活性能保持稳定,略高于亲本;自交后代(S1~S3)与自交亲本的SOD和POD活性相当。  相似文献   
4.
Thermal stability of antioxidant defense enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) was studied in chloroplasts and mitochondria of leaf and inflorescence in heat adaptive weed Chenopodium album. Leaf samples were taken in March (31 °C/14 °C) and young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). Leaf and INF chloroplast and mitochondrial fractions were subjected to elevated temperatures in vitro (5–100 °C) for 30′. SOD and APX showed activity even after boiling treatment in both chloroplast and mitochondria of leaf and INF. SOD was more heat stable than APX in both chloroplasts and mitochondria in both the tissues. Chloroplast contained more heat stable SOD and APX isozymes than mitochondria in both leaf and INF. To the best of our knowledge this is the first report showing presence of thermostable APX isozymes (100 °C for 30′) in chloroplasts and mitochondria in C. album. Heat stable isozymes of SOD and APX in chloroplasts and mitochondria in leaves and inflorescence may contribute to heat tolerance in C. album.  相似文献   
5.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   
6.
Rice is the staple food for more than fifty percent of the world's population, and is therefore an important crop. However, its production is hindered by several biotic and abiotic stresses. Although rice is the only crop that can germinate even in the complete absence of oxygen (i.e. anoxia), flooding (low oxygen) is one of the major causes of reduced rice production. Rice germination under anoxia is characterized by the elongation of the coleoptile, but leaf growth is hampered. In this work, a comparative proteomic approach was used to detect and identify differentially expressed proteins in the anoxic rice coleoptile compared to the aerobic coleoptile. Thirty-one spots were successfully identified by MALDI-TOF MS analysis. The majority of the identified proteins were related to stress responses and redox metabolism. The expression levels of twenty-three proteins and their respective mRNAs were analyzed in a time course experiment.  相似文献   
7.
Dead cells do tell tales   总被引:14,自引:0,他引:14  
The most recent major advances in the study of programmed cell death (PCD) in plants include the observation that peptide inhibitors of caspases inhibit the hypersensitive response. Nitric oxide has been shown to be required for the induction of disease related PCD. Mutant analysis has led to the cloning of the first genes involved in PCD related disease resistance, LSD1 and MLO.  相似文献   
8.
The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate–glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil.  相似文献   
9.
10.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号