首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
《Current biology : CB》2020,30(7):1339-1345.e3
  1. Download : Download high-res image (101KB)
  2. Download : Download full-size image
  相似文献   
2.

Background and Aims

The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process.

Methods

A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated.

Key Results

Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones.

Conclusions

No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.  相似文献   
3.
Molecular mechanisms controlling legume autoregulation of nodulation   总被引:1,自引:0,他引:1  

Background

High input costs and environmental pressures to reduce nitrogen use in agriculture have increased the competitive advantage of legume crops. The symbiotic relationship that legumes form with nitrogen-fixing soil bacteria in root nodules is central to this advantage.

Scope

Understanding how legume plants maintain control of nodulation to balance the nitrogen gains with their energy needs and developmental costs will assist in increasing their productivity and relative advantage. For this reason, the regulation of nodulation has been extensively studied since the first mutants exhibiting increased nodulation were isolated almost three decades ago.

Conclusions

Nodulation is regulated primarily via a systemic mechanism known as the autoregulation of nodulation (AON), which is controlled by a CLAVATA1-like receptor kinase. Multiple components sharing homology with the CLAVATA signalling pathway that maintains control of the shoot apical meristem in arabidopsis have now been identified in AON. This includes the recent identification of several CLE peptides capable of activating nodule inhibition responses, a low molecular weight shoot signal and a role for CLAVATA2 in AON. Efforts are now being focused on directly identifying the interactions of these components and to identify the form that long-distance transport molecules take.  相似文献   
4.
5.
6.
Research spanning almost 50 years has highlighted unique characteristics and irreplaceable list of diverse functions performed by peroxisomes in various model systems. Peroxisomes are single membrane bound highly dynamic organelles ubiquitous to most eukaryotic cells. Proliferation by division of pre-existing organelles and the role of endoplasmic reticulum in the biogenesis of these organelles is now well established. The earliest identified conserved functions of peroxisomes are β-oxidation of fatty acids and reactive oxygen species metabolism. Several studies over the last few decades have reported the importance of this organelle and its numerous cell type, tissue and environment-dependent functions. Their role in several aspects of human health and disease is now under investigation. Studies related to peroxisome biology and functions are now also extended to diverse model systems like Drosophila melanogaster, trypanosomatids, etc. Peroxisomes also intricately collaborate and carry out these functions together with several other organelles in a cell. In this review, we aim to present an overview of our current knowledge of the repertoire of functions of peroxisomes in various model systems.  相似文献   
7.
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.  相似文献   
8.
9.
10.
To understand the autoregulation of nodulation (AON) system, in which leguminous plants control the nodule number, we examined the details of the characteristics of hypernodulation soybean mutants NOD1-3 and NOD3-7. A microscopic study showed that NOD1-3 and NOD3-7 produced small-size leaves due to the smaller number of leaf cells, compared with the Williams parent. These phenotypes were not affected by inoculation with bradyrhizobia or nitrate supply. The AON signaling might be related to the control system of leaf cell proliferation. This hypothesis was strongly supported by the finding that activation of AON in wild types by inoculation leads to an increase in the cell number of leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号