首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 968 毫秒
1.
Barley -amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations, Q44H and R303K, result in amino acids highly conserved in cereal -amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule.  相似文献   
2.
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.  相似文献   
3.
Several amyloid-forming and antimicrobial peptides (AMYs and AMPs) have the ability to bind to and damage cell membranes. In addition, some AMYs possess antimicrobial activity and some AMPs form amyloid-like fibrils, relating the two peptide types and their properties. However, a comparison of their sequence characteristics reveals important differences. The high β-strand and aggregation propensities typical of AMYs are largely absent in α-helix-forming AMPs, which are instead marked by a strong amphipathic moment not generally found in AMYs. Although a few peptides, for example, islet amyloid polypeptide and dermaseptin S9, combine some determinants of both groups, the structural distinctions suggest that antimicrobial activity and amyloid formation are separate features not generally associated.  相似文献   
4.
5.
Subtilisins represent a large class of microbial serine proteases. To date, there are three-dimensional structures of proteinaceous inhibitors from three families in complex with subtilisins in the Protein Data Bank. All interact with subtilisin via an exposed loop covering six interacting residues. Here we present the crystal structure of the complex between the Bacillus lentus subtilisin Savinase and the barley α-amylase/subtilisin inhibitor (BASI). This is the first reported structure of a cereal Kunitz-P family inhibitor in complex with a subtilisin. Structural analysis revealed that BASI inhibits Savinase in a novel way, as the interacting loop is shorter than loops previously reported. Mutational analysis showed that Thr88 is crucial for the inhibition, as it stabilises the interacting loop through intramolecular interactions with the BASI backbone.  相似文献   
6.
Limited information is available on how fruit crops respond to moderate drought stress. In the present study, we investigated how Malus baccata (L.) Borkh. a drought-tolerant genotype apple rootstock, responds to moderate drought stress. Our results for enzyme activity under moderate drought stress indicated that M. baccata produces osmosis-regulating substances. The phosphoproteins in the leaves were analyzed using iTRAQ technology. In total, 269 unique phosphopeptides, 304 phosphorylated sites, and 219 phosphoproteins were quantitatively analyzed in M. baccata. Furthermore, we identified 46 phosphoproteins in M. baccata whose phosphorylation levels significantly changed (PLSC). Among them, 22 PLSC phosphoproteins were found to be involved in metabolic processes that included carbon and nitrogen metabolism. This suggests that a systematic response pattern was generated in M. baccata and moderate drought stress resulted in a new homeostasis of carbon and nitrogen metabolism. The 14 differentially expressed mRNAs encoding phosphoproteins were analyzed by quantitative real-time PCR. Our study is the first to analyze the phosphoproteome of M. baccata and provides insights into the partial molecular regulatory mechanisms of M. baccata under moderate drought stress.  相似文献   
7.
Subsite mapping is a crucial procedure in the characterization of α-amylases (EC 3.2.1.1), which are extensively used in starch-based industries and in diagnosis of pancreatic and salivary glands disorders. A computer-aided method has been developed for subsite mapping of α-amylases, which substitutes the difficult, expensive, and time-consuming experimental determination of action patterns to crystal structures based energy calculations. Interaction energies between enzymes and carbohydrate substrates were calculated after short energy minimization by a molecular mechanics program. A training set of wild type and mutant amylases with known experimental action patterns of 13 enzymes of wide range of origin was used to set up the procedure. Calculations for training set resulted in good correlation in case of subsite binding energies (r2 = 0.827–0.929) and bond cleavage frequencies (r2 = 0.727–0.835). A set of eight novel barley amylase 1 mutants was used to test our model. Subsite binding energies were predicted with r2 = 0.502 correlation coefficient, while bond cleavage frequency prediction resulted in r2 = 0.538. Our computer-aided procedure may supplement the experimental subsite mapping methods to predict and understand characteristic features of α-amylases.  相似文献   
8.
9.
A recent study suggested that increased copy numbers of the AMY2B gene might be a crucial genetic change that occurred during the domestication of dogs. To investigate AMY2B expansion in ancient breeds, which are highly divergent from modern breeds of presumed European origins, we analysed copy numbers in native Japanese dog breeds. Copy numbers in the Akita and Shiba, two ancient breeds in Japan, were higher than those in wolves. However, compared to a group of various modern breeds, Akitas had fewer copy numbers, whereas Shibas exhibited the same level of expansion as modern breeds. Interestingly, average AMY2B copy numbers in the Jomon‐Shiba, a unique line of the Shiba that has been bred to maintain their appearance resembling ancestors of native Japanese dogs and that originated in the same region as the Akita, were lower than those in the Shiba. These differences may have arisen from the earlier introduction of rice farming to the region in which the Shiba originated compared to the region in which the Akita and the Jomon‐Shiba originated. Thus, our data provide insights into the relationship between the introduction of agriculture and AMY2B expansion in dogs.  相似文献   
10.
Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites as binding barriers. Barley alpha-amylase 1 mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in alpha-amylases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号