首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   14篇
  2019年   1篇
  2018年   1篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Autoantibodies against the second extracellular loop of β1‐adrenergic receptor (β1‐AA) not only contribute to increased susceptibility to heart failure, but also play a causative role in myocardial remodeling through their catecholamine‐like effects via binding with the β1‐adrenergic receptor. The current study was designed to determine whether β1‐AA isolated from the sera of heart failure patients could cause TNF‐α secretion from the murine macrophage‐like cell line RAW264.7. Blood samples were collected from 40 patients who had suffered heart failure, as well as from 40 healthy subjects. The titer of β1‐AA and the level of TNF‐α were detected using ELISA. The effect of β1‐AA on murine macrophage‐like cell line RAW264.7 proliferation was detected by CCK‐8 kits and CFSE assay. Western blot assay was used to analyze the expression of phospho‐VASP. β1‐AA appeared more frequently in patients with heart failure than in healthy subjects. The β1‐AA isolated from heart failure patients promoted an increase of TNF‐α levels, which could be completely blocked by the selective β1‐adrenergic receptor antagonist metoprolol and the second extracellular loop of β1‐adrenergic receptor (β1‐AR‐ECII), but only partially inhibited by PKA inhibitor H89. Furthermore, the β1‐AA could enhance the proliferation of RAW264.7 cells in vitro. Meanwhile, the expression of phospho‐VASP was markedly increased in the presence of β1‐AA. These results demonstrate for the first time that the β1‐AA isolated from heart failure patients could bind with β1‐AR on the surface of RAW264.7 cells, causing the release of TNF‐α largely in a PKA‐dependent fashion. J. Cell. Biochem. 113: 3218–3228, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
4.
Functional roles of effectors of plant-parasitic nematodes   总被引:2,自引:0,他引:2  
Haegeman A  Mantelin S  Jones JT  Gheysen G 《Gene》2012,492(1):19-31
  相似文献   
5.
Alpha‐1‐antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at amino acid 342 in the mature protein, resulting in the Z mutation of the alpha‐1‐antitrypsin gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes and monocytes, causing a toxic gain of function. Retained ZAAT is eliminated by ER‐associated degradation and autophagy. We hypothesized that alpha‐1‐antitrypsin (AAT)‐interacting proteins play critical roles in quality control of human AAT. Using co‐immunoprecipitation, we identified ERdj3, an ER‐resident Hsp40 family member, as a part of the AAT trafficking network. Depleting ERdj3 increased the rate of ZAAT degradation in hepatocytes by redirecting ZAAT to the ER calreticulin‐EDEM1 pathway, followed by autophagosome formation. In the Huh7.5 cell line, ZAAT ER clearance resulted from enhancing ERdj3‐mediated ZAAT degradation by silencing ERdj3 while simultaneously enhancing autophagy. In this context, ERdj3 suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD‐related liver disease. J. Cell. Biochem. 118: 3090–3101, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   
6.
7.
8.
The role of phospholipase D (PLD) in cytoskeletal reorganization, ERK activation, and migration is well established. Both isoforms of PLD (PLD1 and PLD2) can independently activate stress fiber formation and increase ERK phosphorylation. However, the isoform's specificity, upstream activators, and downstream targets of PLD that coordinate this process are less well understood. This study explores the role of α(1) -adrenergic receptor stimulation and its effect on PLD activity. We demonstrate that PLD1 activators, RhoA, and PKCα are critical for stress fiber formation and ERK activation, and enhance the production of phosphatidic acid (PA) upon phenylephrine addition. Ectopic expression of dominant negative PLD1 and not PLD2 blocks ERK activation, inhibits stress fiber formation, and reduces cell motility in CCL39 fibroblasts. Furthermore, we demonstrate the mechanism for PLD1 activation of ERK involves Ras. This work indicates that PLD1 plays a novel role mediating growth factor and cell motility events in α(1) -adrenergic receptor-activated cells.  相似文献   
9.
It is well known that the aryl hydrocarbon receptor (AhR) is involved in the toxicity of halogenated aromatic hydrocarbons (HAH) and polycyclic aromatic hydrocarbons (PAH). Recent experiments have shown the induction of impaired tooth and hard‐tissue formation by AhR pathway activation, however, the effect on periodontal ligament (PDL) tissue remains unclear. Here, we investigated the effects of benzo(a)pyrene (BaP), a member of PAH, on the extracellular matrix (ECM) remodeling‐related molecules, collagen type I (COL‐I), matrix metalloproteinase‐1 (MMP‐1), alpha‐smooth muscle actin (α‐SMA) expression, and apoptosis in two different human periodontal ligament cells (HPDLCs). The transduction of AhR from the cytoplasm to the nucleus and the increase of AhR‐responsive genes; that is, cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and aryl‐hydrocarbon receptor repressor (AhRR), expression was induced by BaP exposure in both HPDLCs. BaP treatment significantly enhanced MMP‐1 mRNA expression and MMP‐1 protein production, while markedly suppressing COL‐I and a‐SMA mRNA expression in both HPDLCs. Furthermore, these BaP‐treated HPDLCs fell into apoptotic cell death as evidenced by induction in annexin V and caspase‐3/7 staining and reduction of total cell number and Bcl‐2 mRNA expression. Thus, BaP exposure altered the expression of ECM‐related molecules and induced apoptosis in HPDLCs through activation of the AhR pathway. Overactivity of the AhR pathway may induce an inappropriate turnover of PDL tissue via disordered ECM remodeling and apoptosis in PDL cells. J. Cell. Biochem. 113: 3093–3103, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号