首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2007年   1篇
  2005年   1篇
  1990年   1篇
排序方式: 共有20条查询结果,搜索用时 203 毫秒
1.
急性出血性结膜炎(Acute hemorrhagic conjunctivitis,AHC)是目前人类最常见的眼病之一,柯萨奇病毒A组24型变异株(Coxsackievirus A24 variant,CV-A24v)是近年来报道引起该病的主要病原体。本研究选取10株来自江西省2010年AHC暴发疫情的CV-A24v,采用特异性引物扩增并测定其全基因组序列。对该10条CV-A24v的全基因组序列进行系统发育分析以及重组分析,计算本研究测定的江西10条以及GenBank中所有22条CV-A24v的全基因组序列的氨基酸置换熵值,并预测其正向选择位点。结果表明,在江西10条CV-A24v基因组序列中未检测到重组。基于全基因组序列构建的最大似然树表明江西10株CV-A24v属于GIV基因型,且分处于两条传播链。对上述32条CV-A24v序列的氨基酸置换熵值计算,共得到25个易突变位点(熵值>0.6),易突变概率最高的区段为2A区。基于Datamonkey中FUBAR和FEL模型分析,发现位于结构蛋白VP2区的234位氨基酸为两种模型共同获得的CV-A24v的正向选择位点。本研究分析了江西10株CV-A24v的全基因组序列特征,为CV-A24v引起的AHC防控工作提供了基础资料。  相似文献   
2.
肝萎缩增生复合征(atrophy-hypertrophy complex,AHC)是指肝组织萎缩和代偿性增生的一种临床病理特征,常见的病因有门静脉流入受阻、肝静脉流出受阻、胆道梗阻等。AHC常伴有区域性肝组织的解剖、病理、代谢功能的改变,包括肝脏沿肝门轴的旋转、萎缩肝叶的纤维化和门管区小门静脉的狭窄或血栓形成等。肝萎缩-增生复合征萎缩肝组织仍具有部分代谢功能和生物转化功能,并可能对维持病变肝脏的正常肝功能具有重要的作用,萎缩肝组织仍具有部分代谢功能和生物转化功能,对萎缩肝组织的代谢分区和代谢功能的进一步研究具有重要意义。本文通过分析近年来国内外有关AHC的文献,探讨AHC的病因、病理变化及萎缩肝组织的代谢功能分化特征的研究进展。  相似文献   
3.
4.
Here we report, for the first time, the results of detailed GC and GC/MS analyses of the essential oil of a rare taxon in Serbia, Hypericum elegans Stephan ex Willd . One hundred and sixty two constituents identified accounted for 98.6% of the oil. The major components of the oil were undecane (31.9%), α‐pinene (16.7%), nonane (6.1%), bicyclogermacrene (5.8%), 2‐methyloctane (3.7%), and germacrene D (3.6%). Non‐terpenoids as chemotaxonomic markers constituted the main fraction of H. elegans oil, whereby n‐alkanes were the most abundant contributors of this fraction. Based on these results and previously published ones, we performed an intrasectional multivariate statistical comparison of corresponding essential‐oil chemical compositions. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) of the data on the volatile profiles of section Hypericum taxa revealed that H. elegans either represents an oil chemotype of its own (AHC) or could be considered related to H. perforatum (PCA).  相似文献   
5.
Essential oil yield and composition in seven natural populations of Lavandula latifolia from the eastern Iberian Peninsula were determined by GC/MS. Twenty-eight constituents were identified, accounting for 92.0–95.4% of the total oils. These oils were dominated by the monoterpene fraction and three of them (linalool, cineole and camphor) constituted 79.5–86.9% of the oil from flowers. Essential oil yield in leaves and flowers varied among and within populations, but hierarchic analyses of variance showed that the proportion of variation attributable to individuals was significantly higher than that attributable to population differences. Principal component and cluster analyses allowed three groups of flower essential oils to be distinguished according to their high, intermediate and low proportion of linalool. These essential oil types are respectively correlated to the Supra-, Meso- and Thermo-Mediterranean bioclimatic belts where the populations are located. A genetic analysis based on those terpenes that showed a trimodal distribution roughly corroborated the relationships between the seven populations obtained from the ordination analyses and emphasizes the distinctiveness of some of the populations.  相似文献   
6.
Our lack of knowledge about the biological mechanisms of 50 Hz magnetic fields makes it hard to improve exposure assessment. To provide better information about these exposure measures, we use multidimensional analysis techniques to examine the relations between different exposure metrics for a group of subjects. We used a combination of a two stage Principal Component Analysis (PCA) followed by an ascending hierarchical classification (AHC) to identify a set of measures that would capture the characteristics of the total exposure. This analysis gives an indication of the aspects of the exposure that are important to capture to get a complete picture of the magnetic field environment. We calculated 44 metrics of exposure measures from 16 exposed EDF employees and 15 control subjects, containing approximately 20,000 recordings of magnetic field measurements, taken every 30 s for 7 days with an EMDEX II dosimeter. These metrics included parameters used routinely or occasionally and some that were new. To eliminate those that expressed the least variability and that were most highly correlated to one another, we began with an initial Principal Component Analysis (PCA). A second PCA of the remaining 12 metrics enabled us to identify from the foreground 82.7% of the variance: the first component (62.0%) was characterized by central tendency metrics, and the second (20.7%) by dispersion characteristics. We were able to use AHC to divide the entire sample (of individuals) into four groups according to the axes that emerged from the PCA. Finally, discriminant analysis tested the discriminant power of the variables in the exposed/control classification as well as those from the AHC classification. The first showed that two subjects had been incorrectly classified, while no classification error was observed in the second. This exploratory study underscores the need to improve exposure measures by using at least two dimensions: intensity and dispersion. It also indicates the usefulness of constructing a typology of magnetic field exposures.  相似文献   
7.
Analysis by GC and GC/MS of the essential‐oil samples obtained from dry above‐ground parts of Hypericum rumeliacum Boiss . (collected in the flowering and fruit‐forming vegetative stages) allowed the identification of 212 components in total, comprising ≥97.8% of the total oil composition. In the flowering phase, the major identified volatile compounds were undecane (6.6%), dodecanal (10.8%), and germacrene D (14.1%), whereas α‐pinene (7.3%), β‐pinene (26.1%), (Z)‐β‐ocimene (8.5%), (E)‐β‐ocimene (10.2%), bicyclogermacrene (7.7%), and germacrene D (15.1%) were dominant in the fruit‐forming phase. Some of the minor constituents found in the studied oil samples (e.g., a homologous series of four 6‐alkyl‐5,6‐dihydro‐2H‐pyran‐2‐ones, i.e., massoia dodeca‐, trideca‐, tetradeca‐, and hexadecalactones) have a restricted occurrence in the Plant Kingdom, and their presence in Hypericum L. spp. has not been previously reported. The chemical compositions of the herein studied additional 34 oils obtained from selected Hypericum taxa were compared using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis). The results of these statistical analyses could not be used to either confirm or discard the existence of different H. rumeliacum chemotypes. However, they have implied that the volatile profile of this plant species is determined by the stage of its phenological development.  相似文献   
8.
This review describes our current understanding of the “traffic lights” that regulate sulfur flow through the methionine bionetwork in liver, which supplies two major homeostatic systems governing cellular methylation and antioxidant potential. Theoretical concepts derived from mathematical modeling of this metabolic nexus provide insights into the properties of this system, some of which seem to be paradoxical at first glance. Cellular needs supported by this network are met by use of parallel metabolic tracks that are differentially controlled by intermediates in the pathway. A major task, i.e. providing cellular methylases with the methylating substrate, S-adenosylmethionine, is met by flux through the methionine adenosyltransferase I isoform. On the other hand, a second important function, i.e., stabilization of the blood methionine concentration in the face of high dietary intake of this amino acid, is achieved by switching to an alternative isoform, methionine adenosyltransferase III, and to glycine N-methyl transferase, which together bypass the first two reactions in the methionine cycle. This regulatory strategy leads to two metabolic modes that differ in metabolite concentrations and metabolic rates almost by an order of magnitude. Switching between these modes occurs in a narrow trigger zone of methionine concentration. Complementary experimental and theoretical analyses of hepatic methionine metabolism have been richly informative and have the potential to illuminate its response to oxidative challenge, to methionine restriction and lifespan extension studies and to diseases resulting from deficiencies at specific loci in this pathway.  相似文献   
9.
The chemical composition and the antimicrobial activity of the essential oil isolated from the aerial parts of Hypericum maculatum Crantz were determined. In total, 109 compounds were identified, with germacrene D (21.5%), nonane (6.5%), (E)‐β‐farnesene (5.3%), δ‐cadinene (4.5%), and ledol (4.4%) as the main constituents. The chemical compositions of this oil and of four previously studied H. maculatum oils were compared using multivariate statistical analyses, viz., agglomerative hierarchical cluster and principal component analyses. Based on the results, the interrelationship among the hitherto studied H. maculatum oil samples, including the oil characterized here, was discussed. The study of the antimicrobial potential of the oil against five bacterial and two fungal strains showed that the oil had mainly moderate antimicrobial effects.  相似文献   
10.
Characterization by GC‐FID and GC/MS analyses of the Stachys officinalis (L.) Trevis . essential oil obtained by hydrodistillation of the aerial parts allowed the identification of 190 components that represented 97.9% of the total oil content. The main constituents identified were germacrene D (19.9%), β‐caryophyllene (14.1%), and α‐humulene (7.5%). Terpenoids were by far predominant (89.4%), with sesquiterpene hydrocarbons (69.1%) and oxygenated sesquiterpenes (14.8%) being the most abundant compounds detected in the oil. Based on the present and previously published results, multivariate statistical comparison of the chemical composition of the essential oils was performed within the species. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) of the data on the volatile profiles of S. officinalis taxa revealed no pronounced differences among the samples originated from the Balkan Peninsula. Additionally, the oil was screened for in vitro antibacterial and antifungal activity using the broth microdilution assay. The oil's best antimicrobial activities were obtained against the mold Aspergillus niger (minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of 2.5 and 5.0 mg/ml, resp.) and the yeast Candida albicans (MIC and MFC of 5.0 mg/ml).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号