首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2014年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
1.
Nigel K. Packham  Robert C. Ford 《BBA》1986,852(2-3):183-190
Addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p) to detergent-solubilised Photosystem II (PS II) particles results in the photo-oxidation of carotenoid and inhibition of the steady-state oxygen-evolution rate. It has been proposed that ANT2p may modify the water-splitting reactions by mediating the transfer of reducing equivalents from endogenous electron donors, such as carotenoid, to the S2 and S3 oxidation states of PS II. In this paper we present evidence indicating that ANT2p can interact with PS II at two separate loci. The water-splitting complex is shown to be the primary site of attack by ANT2p, since artificial electron donors, such as 1,5-diphenylcarbazide (DPC), can restore PS II photochemical activity by feeding reducing equivalents directly to the reaction centre. The ANT2p interaction at this site is light-intensity dependent. A second inhibitory site close to the reaction centre P-680 chlorophyll is detected at slightly higher ANT2p concentrations. The inhibition at this site is unaffected either by changes in the actinic light intensity or by the addition of electron donors. The flash-induced oxidation of carotenoid has an ANT2p concentration dependence and an insensitivity to DPC which suggests that it results from the inhibition of the reaction centre and not with that of the water-splitting complex.  相似文献   
2.
Flash-induced, fast (t 1/2 1 ms), reversible reduction of the high potential cytochrome b-559 (cyt b-559HP) was observed in chloroplasts in the presence of 2 M protonophore, FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), CCCP (carbonylcyanide 3-chlorophenylhydrazone) or SF 6847 (2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)phenol). These protonophores promote autooxidation of cyt b-559HP in the dark (Arnon and Tang 1988, Proc Natl Acad Sci USA 85: 9524). No fast photoreduction could, however, be observed if the molecules were oxidized with ferricyanide in the absence of protonophores. This suggests that the molecules must be deprotonated to be capable for fast photoreduction.Photoreduction of cyt b-559HP was largely insensitive to DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but was inhibited by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). With a train of flashes, no oscillation could be observed in the amplitudes of photoreduction. These data strongly suggest that cyt b-559HP is reduced by the semireduced secondary quinone acceptor (QB ) of Photosystem 2.Abbreviations ADRY- acceleration of the deactivation reactions of the water-splitting enzyme system Y of photosynthesis - Ant 2p- 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - cyt- cyto-chrome - CCCP- carbonylcyanide 3-chlorophenylhydrazone - DBMIB- 2,5-dibromo-3-methyl-6-iso-propyl-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimehtylurea - FCCP- carbonylcyanide p-trifluoromethoxyphenylhydrazone - FeCy- ferricyanide - HP- high potential form - HQ- hydroquinone - PQ- plastoquinone - PS 2- Photosystem 2 - SF 6847- 2,6-di-(t-butyl)-4-(2,2-dicyanovinyl)-phenol  相似文献   
3.
In the presence of Cl?, the severity of ammonia-induced inhibition of photosynthetic oxygen evolution is attenuated in spinach thylakoid membranes (Sandusky, P.O. and Yocum, C.F. (1983) FEBS Lett. 162, 339–343). A further examination of this phenomenon using steady-state kinetic analysis suggests that there are two sites of ammonia attack, only one of which is protected by the presence of Cl?. In the case of Tris-induced inhibition of oxygen evolution only the Cl? protected site is evident. In both cases the mechanism of Cl? protection involves the binding of Cl? in competition with the inhibitory amine. Anions (Br? and NO?3) known to reactive oxygen evolution in Cl?-depleted membranes also protect against Tris-induced inhibition, and reactivation of Cl?-depleted membranes by Cl? is competitively inhibited by ammonia. Inactivation of the oxygen-evolving complex by NH2OH is impeded by Cl?, whereas Cl? does not affect the inhibition induced by so-called ADRY reagents. We propose that Cl? functions in the oxygen-evolving complex as a ligand bridging manganese atoms to mediate electron transfer. This model accounts both for the well known Cl? requirement of oxygen evolution, and for the inhibitory effects of amines on this reaction.  相似文献   
4.
5.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   
6.
R.R. Sharp  C.F. Yocum 《BBA》1981,635(1):90-104
The kinetics of Mn release during NH2OH inactivation of the water oxidizing reaction is largely insensitive to the S-state present during addition of NH2OH. This appears to reflect reduction by NH2OH of higher S-states to a common more reduced state (S0 or S?1) which alone is susceptible to NH2OH inactivation. Sequences of saturating flashes with dark intervals in the range 0.2–5 s?1 effectively prevent NH2OH inactivation and the associated liberation of manganese. This light-induced protection disappears rapidly when the dark interval is longer than about 5 s. Under continuous illumination, protection against NH2OH inactivation is maximally effective at intensities in the range 103–104 erg · cm?2 · s?1. This behavior differs from that of NH2OH-induced Mn release, which is strongly inhibited at all intensities greater than 103 erg · cm?2 · s?1. This indicates that two distinct processes are responsible for inactivation of water oxidation at high and low intensities. Higher S-states appear to be immune to the reaction by which NH2OH liberates manganese, although the overall process of water oxidation is inactivated by NH2OH in the presence of intense light. The light-induced protection phenomenon is abolished by 50 μM DCMU, but not by high concentrations of carbonyl cyanide m-chlorophenylhydrazone, which accelerates inactivation reactions of the water-splitting enzyme, Y (an ADRY reagent). The latter compound accelerates both inactivation of water oxidation and manganese extraction in the dark.  相似文献   
7.
Incubation of PS II membranes with herbicides results in changes in EPR signals arising from reaction centre components. Dinoseb, a phenolic herbicide which binds to the reaction centre polypeptide, changes the width and form of the EPR signal arising from photoreduced Q?AFe. o-Phenanthroline slightly broadens the Q?AFe signal. These effects are attributed to changes in the interaction between the semi-quinone and the iron. DCMU, which binds to the 32 kDa protein, has virtually no effect on the width of the Q?AFe signal but does give rise to an increase in its amplitude. This could result from a change in redox state of an interacting component. Herbicide effects can also be seen when Q?AFe is chemically reduced and these seen to be reflected by changes in splitting and amplitude of the split pheophytin? signal. Dinoseb also results in the loss of ‘Signal II dark’, the conversion of reduced high-potential cytochrome b559 to its oxidized low-potential form and the presence of transiently photooxidized carotenoid after a flash at 25°C; these effects indicate that dinoseb may also act as an ADRY reagent.  相似文献   
8.
A class of compounds, usually referred to as ADRY reagents, destabilize intermediates in the photosynthetic water-oxidizing process. The effects of these species on the reduction kinetics of Z?, the oxidized donor to P-680, have been monitored in Tris-washed chloroplasts by following the decay of EPR Signal IIf. In the presence of ADRY reagents (e.g., sodium picrate, carbonyl cyanide m-chlorophenylhydrazone) this process follows an exponential time course, the decay half-time of which decreases as the ADRY reagent concentration increases. From this pseudo-first-order behavior, the second-order rate constants for four commonly used ADRY reagents have been extracted. The ADRY-induced acceleration in Z? reduction proceeds independently of conditions imposed on the acceptor side of Photosystem II and shows no synergism with exogenous electron donors. These observations are most easily rationalized in terms of a model which proposes direct reduction of Z? by the ADRY reagent followed by regeneration of the reduced ADRY reagent in a nonspecific reaction with membrane components such as carotenoids, chlorophyll or protein. A comparison of the second-order rate constants we obtain for ADRY reagents in their reaction with Z? in Tris-washed chloroplasts with those obtained from the literature for the ADRY- reagent induced deactivation of states S2 and S3 in oxygen-evolving chloroplasts reveals a close similarity between the two processes. From this observation, a general model for the action of ADRY reagents in destabilizing the high-potential oxidizing equivalents generated in Photosystem II is proposed.  相似文献   
9.
Krisztián Cser 《BBA》2007,1767(3):233-243
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P680, and the first quinone electron acceptor, QA, were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S2QA and S2QB states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S2QA and S2QB states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of QA/QA relative to that observed in the presence of DCMU, charge recombination from the S2QA state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P680+Phe radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P680* from 1[P680+Ph] and direct recombination of the 3[P680+Ph] and 1[P680+Ph] radical states, respectively. An additional non-radiative pathway involves direct recombination of P680+QA. The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of ΔG(P680* ↔ P680+Phe) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of ΔG(P680+Phe ↔ P680+QA) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   
10.
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized (“O-type” effects) or when it is reduced (“R-type” effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the “O-type” mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an “R-type” mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as QC which interacts with Cyt b559 and is clearly not the QB site. Binding of compounds L to the QC site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the Em of HP Cyt b559 with increasing concentration of L (up to 10 Kox(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to QC site when HP Cyt b559 is reduced (described by Kred(L)) induce a conversion of HP Cyt b559 to lower potential redox forms (“R-type” transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the QC site are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号