首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  23篇
  2022年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
The majority of the high (12-fold elevated) baseline sister-chromatid exchanges (SCEs) that occur in the CHO mutant line EM9 appear to be a consequence of incorporated BrdUrd, and they arise during replication of DNA containing BrdUrd in a template strand. In normal CHO cells the alkaline elution patterns of DNA newly replicated on a BrdUrd-containing template are significantly altered compared with those seen during the replication on an unsubstituted template. The nascent DNA synthesized on such an altered template is delayed in reaching mature size, possibly because replication forks are temporarily blocked at sites occurring randomly along the template. Transient blockage of replication forks may be a prerequisite for SCE. The delay in replication on BrdUrd-substituted templates was greater in EM9 cells than in parental AA8 cells and was also greater in AA8 cells treated with benzamide, an inhibitor of poly(ADPR) polymerase, than in untreated AA8 cells. Under these conditions, treatment with benzamide also produced a 7-fold increase in SCEs in AA8. An EM9-derived revertant line that has a low baseline SCE frequency showed less delay in replication on BrdUrd-substituted templates than did EM9. However, under conditions where the template strand contained CldUrd, which was shown to produce 4-fold more SCEs than BrdUrd in AA8 cells, the replication delay in AA8 was not any greater in the CldUrd-substituted cells. Thus, other factors besides the delay appear to be involved in the production of SCEs by the template lesions resulting from incorporation of the halogen-substituted pyrimidine molecules.  相似文献   
2.
The interaction of 3-aminopyridine-adenine dinucleotide, an NAD + 2 analogue which is fluorescent at the pyridine end of the molecule, with rabbit muscle glyceraldehyde-3-phosphate dehydrogenase was investigated. The fluorescence properties of the AAD+ molecule were used to monitor the nicotinamide subsites ou the GPDHase tetramer, the fluorescent aminopyridine moiety of the molecule serving as an intrinsic probe. Although the binding of AAD+ wag found to be negatively co-operative, no conformational changes induced at the nicotinamide subsite upon coenzyme binding were found to be transmitted to neighboring subunits. These findings, in conjunction with our earlier findings and with the observation that different NAD+ analogues which differ in the chemistry of the pyridine moiety bind with different extents of co-operativity, enable us to offer specific roles for the nicotinamide and the adenine subsites in generating the negative co-operativity.It is suggested that the structure of the pyridine moiety of the coenzyme controls the mode of binding of the pyridine moiety to the nicotinamide subsite. This, in turn, controls the orientation of the adenine moiety with respect to its subsite, thereby determining the mode of the interactions between the adenine and its binding domain. As the propagation of conformational changes caused by these interactions to neighboring subunits is believed to be the cause of the negative co-operativity exhibited by this enzyme towards coenzyme binding, the structure of the pyridine moiety controls this phenomenon.  相似文献   
3.
(3H)poly(ADP-ribose) synthesized from nuclei by incubation with (3H)NAD was released from protein by alkaline treatment and electrophoresed in dodecyl sulfate gels. Individual polymers up to at least 33 units were completely separated according to their chain length. Size distribution was visualized by fluorography of the gels, and quantified by radioactivity determination of sliced gels The method could be applied to crude nuclear extracts. It showed that nuclei of Ehrlich ascites tumor cells produced a poly(ADP-ribose) pattern distinctly different from that of rat liver nuclei.  相似文献   
4.
5.
Protein-reversible ADP-ribosylation is emerging as an important post-translational modification used to control enzymatic and protein activity in different biological systems. This modification regulates nitrogenase activity in several nitrogen-fixing bacterial species. ADP-ribosylation is catalyzed by ADP-ribosyltransferases and is reversed by ADP-ribosylhydrolases. The structure of the ADP-ribosylhydrolase that acts on Azospirillum brasilense nitrogenase (dinitrogenase reductase-activating glycohydrolase, DraG) has been solved at a resolution of 2.5 Å. This bacterial member of the ADP-ribosylhydrolase family acts specifically towards a mono-ADP-ribosylated substrate. The protein shows an all-α-helix structure with two magnesium ions located in the active site. Comparison of the DraG structure with orthologues deposited in the Protein Data Bank from Archaea and mammals indicates that the ADP-ribosylhydrolase fold is conserved in all domains of life. Modeling of the binding of the substrate ADP-ribosyl moiety to DraG is in excellent agreement with biochemical data.  相似文献   
6.
Human NUDT5 (hNUDT5) is an ADP-ribose pyrophosphatase (ADPRase) belonging to the Nudix hydrolase superfamily. It presumably plays important roles in controlling the intracellular level of ADP-ribose (ADPR) to prevent non-enzymatic ADP-ribosylation by hydrolyzing ADPR to AMP and ribose 5'-phosphate. We report here the crystal structures of hNUDT5 in apo form, in complex with ADPR, and in complex with AMP with bound Mg2+. hNUDT5 forms a homodimer with substantial domain swapping and assumes a structure more similar to Escherichia coli ADPRase ORF209 than human ADPRase NUDT9. The adenine moiety of the substrates is specifically recognized by the enzyme via hydrogen-bonding interactions between N1 and N6 of the base and Glu47 of one subunit, and between N7 of the base and Arg51 of the other subunit, providing the molecular basis for the high selectivity of hNUDT5 for ADP-sugars over other sugar nucleotides. Structural comparisons with E. coli ADPRase ORF209 and ADPXase ORF186 indicate that the existence of an aromatic residue on loop L8 in ORF186 seems to be positively correlated with its enzymatic activity on APnA, whereas hNUDT5 and ORF209 contain no such residue and thus have low or no activities on APnA.  相似文献   
7.
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+‐permeable, nonselective cation channel involved in diverse physiological processes such as immune response, apoptosis, and body temperature sensing. TRPM2 is activated by ADP‐ribose (ADPR) and 2′‐deoxy‐ADPR in a Ca2+‐dependent manner. While two distinct binding sites exist for ADPR that exert different functions dependent on the species, the involvement of either binding site regarding the superagonistic effect of 2′‐deoxy‐ADPR is not clear yet. Here, we report the crystal structure of the MHR1/2 domain of TRPM2 from zebrafish (Danio rerio), and show that both ligands bind to this domain and activate the channel. We identified a so far unrecognized Zn2+‐binding domain that was not resolved in previous cryo‐EM structures and that is conserved in most TRPM channels. In combination with patch clamp experiments we comprehensively characterize the effect of the Zn2+‐binding domain on TRPM2 activation. Our results provide insight into a conserved motif essential for structural integrity and channel activity.  相似文献   
8.
The closely related cation channels TRPM2 and TRPM8 show completely different requirements for stimulation and are regulated by Ca2+ in an opposite manner. TRPM8 is basically gated in a voltage-dependent process enhanced by cold temperatures and cooling compounds such as menthol and icilin. The putative S4 voltage sensor of TRPM8 is closely similar to that of TRPM2, which, however, is mostly devoid of voltage sensitivity. To gain insight into principal interactions of critical channel domains during the gating process, we created chimeras in which the entire S5-pore-S6 domains were reciprocally exchanged. The chimera M2-M8P (i.e. TRPM2 with the pore of TRPM8) responded to ADP-ribose and hydrogen peroxide and was regulated by extracellular and intracellular Ca2+ as was wild-type TRPM2. Single-channel recordings revealed the characteristic pattern of TRPM2 with extremely long open times. Only at far-negative membrane potentials (−120 to −140 mV) did differences become apparent because currents were reduced by hyperpolarization in M2-M8P but not in TRPM2. The reciprocal chimera, M8-M2P, showed currents after stimulation with high concentrations of menthol and icilin, but these currents were only slightly larger than in controls. The transfer of the NUDT9 domain to the C terminus of TRPM8 produced a channel sensitive to cold, menthol, or icilin but insensitive to ADP-ribose or hydrogen peroxide. We conclude that the gating processes in TRPM2 and TRPM8 differ in their requirements for specific structures within the pore. Moreover, the regulation by extracellular and intracellular Ca2+ and the single-channel properties in TRPM2 are not determined by the S5-pore-S6 region.  相似文献   
9.
SIRT1 is a NAD+-dependent deacetylase that plays important roles in many cellular processes. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an open apo form and a closed conformation in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a β hairpin structure that complements the β sheet of the NAD+-binding domain, covering an essentially invariant hydrophobic surface. The apo form adopts a distinct open conformation, in which the smaller subdomain of SIRT1 undergoes a rotation with respect to the larger NAD+-binding subdomain. A biochemical analysis identifies key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain.  相似文献   
10.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号