首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 671 毫秒
1
1.
2.
Uremic patients have a much higher risk of cardiovascular diseases and death. Uremic toxins are probably involved in the development of vascular endothelial dysfunction. Indoxyl sulfate (IS) is a uremic toxin that accumulates with deterioration of renal function. This study explored the effects of IS on the adherens junctions of vascular endothelial cells and revealed the underlying mechanism. Bovine pulmonary artery endothelial cells (BPAECs) were treated with IS, and the distribution of vascular endothelial cadherin (VE-cadherin), p120-catenin, β-catenin, and stress fibers was examined by immunofluorescence. IS treatment resulted in disruption of intercellular contacts between BPAECs with prominent parallel-oriented intracellular stress fiber formation. Intracellular free radical levels which measured by flow cytometry increased after IS treatment. The antioxidant, MnTMPyP, and an ERK pathway inhibitor, U0126, both significantly prevented IS-induced disruption of intercellular contacts. Western blotting analyses demonstrated that IS-induced phosphorylation of myosin light chain kinase (MLCK) and myosin light chains (MLC) as well as activation of extracellular-signal-regulated protein kinase (ERK1/ERK2). Pretreatment with MnTMPyP prevented ERK1/2 phosphorylation. U0126 prevented the IS-induced MLCK and MLC phosphorylation. MEK-ERK acted as the upstream regulator of the MLCK-MLC pathway. These findings suggest that the superoxide anion-MEK-ERK-MLCK-MLC signaling mediates IS-induced junctional dispersal of BPAECs.  相似文献   
3.
4.
E-cadherin based adherens junctions are finely regulated by multiple cellular signaling events. Here we show that the Ras-related Rap1 GTPase is enriched in regions of nascent cell-cell contacts and strengthens E-cadherin junctions: constitutively active Rap1 expressing MDCK cells exhibit increased junctional contact and resisted calcium depletion-induced cell-cell junction disruption. E-cadherin disengagement activated Rap1 and this correlated with E-cadherin association with the Rap GEFs, C3G and PDZ-GEF I. PDZ-GEF I associated with E-cadherin and beta-catenin whereas C3G interaction with E-cadherin did not involve beta-catenin. Knockdown of PDZ-GEF I in MDCK cells decreased Rap1 activity following E-cadherin junction disruption. We hereby show that Rap1 plays a role in the maintenance and repair of E-cadherin junctions and is activated via an "outside-in" signaling pathway initiated by E-cadherin and mediated at least in part by PDZ-GEF I.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号