首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2015年   1篇
  2014年   10篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
PICKLE plays a critical role in repression of genes that regulate development identity in Arabidopsis thaliana. PICKLE codes for a putative ATP-dependent chromatin remodeler that exhibits sequence similarity to members of subfamily II of animal CHD remodelers, which includes remodelers such as CHD3/Mi-2 that also restrict expression of developmental regulators. Whereas animal CHD3 remodelers are a component of the Mi-2/NuRD complex that promotes histone deacetylation, PICKLE promotes trimethylation of histone H3 lysine 27 suggesting that it acts via a distinct epigenetic pathway. Here, we examine whether PICKLE is also a member of a multisubunit complex and characterize the biochemical properties of recombinant PICKLE protein. Phylogenetic analysis indicates that PICKLE-related proteins in plants share a common ancestor with members of subfamily II of animal CHD remodelers. Biochemical characterization of PICKLE in planta, however, reveals that PICKLE primarily exists as a monomer. Recombinant PICKLE protein is an ATPase that is stimulated by ssDNA and mononucleosomes and binds to both naked DNA and mononucleosomes. Furthermore, recombinant PICKLE exhibits ATP-dependent chromatin remodeling activity. These studies demonstrate that subfamily II CHD proteins in plants, such as PICKLE, retain ATP-dependent chromatin remodeling activity but act through a mechanism that does not involve the ubiquitous Mi-2/NuRD complex.  相似文献   
2.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   
3.
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain.  相似文献   
4.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   
5.
Four 5-carbon-linked trioxane dimer orthoesters (6a-6d) have been prepared in 4 or 5 chemical steps from the natural trioxane artemisinin (1). When administered orally to malaria-infected mice using a single dose of only 6 mg/kg body weight along with 18 mg/kg of mefloquine hydrochloride, trioxane dimer orthoester sulfone 6d completely and safely cured the mice; after 30 days, the cured mice showed no detectable parasitemia, gained at least as much weight as the control mice (no infection), and behaved normally.  相似文献   
6.
Summary. An important sequence motif identified by sequence analysis is shared by the ACT domain family, which has been found in a number of diverse proteins. Most of the proteins containing the ACT domain seem to be involved in amino acid and purine synthesis and are in many cases allosteric enzymes with complex regulation enforced by the binding of ligands. Here we explore the current understanding of the ACT domain function including its role as an allosteric module in a selected group of enzymes. We will further describe in more detail three of the proteins where some understanding is available on function and structure: i) the archetypical ACT domain protein E. coli 3PGDH, which catalyzes the first step in the biosynthesis of L-Ser, ii) the bifunctional chorismate mutase/prephenate dehydratase (P-protein) from E. coli, which catalyzes the first two steps in the biosynthesis of L-Phe, and iii) the mammalian aromatic amino acid hydroxylases, with special emphasis on phenylalanine hydroxylase, which catalyzes the first step in the catabolic degradation of L-phenylalanine (L-Phe). The ACT domain is commonly involved in the binding of a small regulatory molecule, such as the amino acids L-Ser and L-Phe in the case of 3PGDH and P-protein, respectively. On the other hand, for PAH, and probably for other enzymes, this domain appears to have been incorporated as a handy, flexible small module with the potential to provide allosteric regulation via transmission of finely tuned conformational changes, not necessarily initiated by regulatory ligand binding at the domain itself.Current address: Protein Biophysics & Delivery, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Denmark.  相似文献   
7.
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.  相似文献   
8.
The native serpin state is kinetically trapped. However, under mildly destabilizing conditions, the conformational landscape changes, and a number of nonnative conformations with increased stability can be readily formed. The ability to undergo structural change is due to intrinsic strain within the serpin's tertiary fold, which is utilized for proteinase inhibition but renders the protein susceptible to aberrant folding and self-association. The relationship between these various conformations is poorly understood. Antichymotrypsin (ACT) is an inhibitory serpin that readily forms a number of inactive conformations, induced via either environmental stress or interaction with proteinases. Here we have used a variety of biophysical and structural techniques to characterize the relationship between some of these conformations. Incubation of ACT at physiological temperature results in the formation of a range of conformations, including both polymer and misfolded monomer. The ability to populate these nonnative states and the native conformation reflects an energy landscape that is very sensitive to the solution conditions. X-ray crystallography reveals that the misfolded monomeric conformation is in the delta conformation. Further polymerization and seeding experiments show that the delta conformation is an end point in the misfolding pathway of ACT and not an on-pathway intermediate formed during polymerization. The observation that ACT readily forms this inactive conformation at physiological temperature and pH suggests that it may have a role in both health and disease.  相似文献   
9.
The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins.  相似文献   
10.
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号