首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   1篇
  44篇
  2019年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
3.
Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) — (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.  相似文献   
4.
5.
Cadherin 23 (CDH23) is an important constituent of the hair cell tip link in the organ of Corti. Mutations in cdh23 are associated with age-related hearing loss (AHL). In this study, we proposed that the Cdh23(nmf308/nmf308) mice with progressive hair cell loss had specific morphological changes and suffered a base to apex gradient and age-related hearing loss, and that mutations in cdh23 were linked to AHL. The Cdh23(nmf308/nmf308) mice produced by the N-nitrosourea (ENU) mutagenesis program were used as an animal model to study AHL and progressive hair cell loss. RT-PCR was performed to confirm the cdh23 mutation in Cdh23(nmf308/nmf308) mice and genetic analysis was used to map the specific mutation site. Distortion product otoacoustic emission (DPOAE) assay and acoustic brainstem evoked response (ABR) threshold analysis were carried out to evaluate the AHL. Cochlear histology was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM), as well as the nuclear labeling by propidium iodide staining; terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and caspase-3 activities were examined to evaluate cell apoptosis. Genetic mapping identified the candidate gene linking AHL in Cdh23(nmf308/nmf308) mice as cdh23. A mutation in exon3 (63 T>C) was screened as compared with the sequence of the same position of the gene from B6 (+/+) mice. The cochleae outer hair cells were reduced from 5-10% at one month to 100% at three months in the basal region. DPOAE and ABR exhibited an increasing threshold at high frequencies (≥16kHz) from one month of age. Morphological and cellular analysis showed that Cdh23(nmf308/nmf308) mice exhibited a time course of histological alterations and cell apoptosis of outer hair cells. Our results suggest that the cdh23 mutation may be harmful to the stereociliary tip link and cause the hair cell apoptosis. Due to the same cdh23 mutations in human subjects with presbycusis (Petit et al., 2001; Zheng et al., 2005), the Cdh23(nmf308/nmf308) mouse is an excellent animal model for investigating the mechanisms involved in human AHL.  相似文献   
6.
7.
目的探讨耳蜗显微结构和生理指标对缺铁性肾虚耳聋大鼠模型的评价作用。方法选用体重30~32 g、无耳疾、听性脑干反应(auditory brainstem response,ABR)阈值正常的1~2周龄SPF级SD大鼠120只,雌雄分养,分为缺铁组80只、正常对照组40只,饲养时间12周;以出现肾虚证和至少一耳ABR阈值≥15 dB,作为判断肾虚耳聋的标准,获得缺铁性肾虚耳聋大鼠22只,从中选取肾虚耳聋大鼠20只,同时以20只正常大鼠作对照。观察耳蜗血管纹、螺旋器等耳蜗显微结构变化,检测ABR阈值以及血红蛋白和血清铁等指标的变化。结果实验组和正常对照大鼠的血红蛋白和血清铁分别为11.80 g/L,4.5μmol/L和45.9 g/L,22.23μmol/L,ABR阈值分别为(30±5)dB和(10±5)dB;实验组血管纹血管明显减少;螺旋器毛细胞听毛有缺失、倒伏现象。结论缺铁性肾虚耳聋大鼠血红蛋白、血清铁和ABR阈值,以及耳蜗血管纹、螺旋器等耳蜗显微结构变化等指标,均较为稳定,是较好的评价指标。  相似文献   
8.
Using senescence marker protein 30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice, which cannot synthesize vitamin C (VC), we examined whether modulating VC level affects age-related hearing loss (AHL). KO and wild-type (WT) C57BL/6 mice were given water containing 1.5 g/L VC [VC(+)] or 37.5 mg/L VC [VC(−)]. At 10 months of age, KO VC(−) mice showed significant reduction in VC level in the inner ear, plasma, and liver, increase in auditory brainstem response (ABR) thresholds, and decrease in the number of spiral ganglion cells compared to WT VC(−), WT VC(+), and KO VC(+) mice. There were no differences in VC level in the inner ear, ABR thresholds, or the number of spiral ganglion cells among WT VC(−), WT VC(+), and KO VC(+) mice. These findings suggest that VC depletion can accelerate AHL but that supplementing VC may not increase VC level in the inner ear or slow AHL in mice.  相似文献   
9.
Fishes are constantly exposed to various sources of noise in their underwater acoustic environment. Many of these sounds are from anthropogenic sources, especially engines of boats. Noise generated from a small boat with a 55 horsepower outboard motor was played back to fathead minnows, Pimephales promelas, for 2 h at 142 dB (re: 1 Pa), and auditory thresholds were measured using the auditory brainstem response (ABR) technique. The results demonstrate that boat engine noise significantly elevate a fish's auditory threshold at 1 kHz (7.8 dB), 1.5 kHz (13.5 dB), and 2.0 kHz (10.5 dB), the most sensitive hearing range of this species. Such a short duration of noise exposure leads to significant changes in hearing capability, and implies that man-made noise generated from boat engines can have far reaching environmental impacts on fishes.  相似文献   
10.
《Free radical research》2013,47(10):1162-1172
Abstract

Objective: Hair cell death caused by acute acoustic trauma (AAT) reaches a secondary maximum at 7–10 days after noise exposure due to a second oxidative stress. Therefore, this study tested the effects of a combination of hydroxylated alpha-phenyl-tert-butylnitrone (4-OHPBN), N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine (ALCAR) on AAT when the duration of treatment was extended over the period of 7–10 days after noise exposure as well as when the initial treatment was delayed 24 to 48 h after noise exposure. Methods: Thirty chinchilla were exposed to a 105 dB octave-band noise centred at 4 kHz for 6 h and received the following treatments: (1) noise + saline (2–5) 4-OHPBN (20 mg/kg) + NAC (50 mg/kg) + ALCAR (20 mg/kg) intraperitoneally injected beginning 24 or 48 h after noise exposure twice daily for the next 2, 8 or 9 days. Auditory brainstem response (ABR) threshold shifts, outer hair cell (OHC) counts and organ of Corti immunohistochemistry were analyzed. Results: The combination administration decreased ABR threshold shifts, inhibited OHC loss and reduced 4-hydroxynonenal (4-HNE) immunostaining. Significant decreases in the threshold shifts and reduction in OHC loss were observed with a shorter delay before starting treatment (24 h) and longer duration (9 days) treatment. Conclusions: These results demonstrate that the administration of antioxidant drugs extended up to 10 days after noise exposure can effectively treat AAT in a chinchilla model. This may provide significant and potentially clinically important information about the effective therapeutic window for AAT treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号