首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2186篇
  免费   71篇
  国内免费   35篇
  2292篇
  2023年   91篇
  2022年   152篇
  2021年   194篇
  2020年   109篇
  2019年   94篇
  2018年   53篇
  2017年   31篇
  2016年   39篇
  2015年   29篇
  2014年   59篇
  2013年   90篇
  2012年   33篇
  2011年   36篇
  2010年   20篇
  2009年   42篇
  2008年   50篇
  2007年   54篇
  2006年   46篇
  2005年   68篇
  2004年   83篇
  2003年   64篇
  2002年   39篇
  2001年   64篇
  2000年   32篇
  1999年   52篇
  1998年   50篇
  1997年   45篇
  1996年   59篇
  1995年   53篇
  1994年   51篇
  1993年   52篇
  1992年   48篇
  1991年   47篇
  1990年   35篇
  1989年   30篇
  1988年   35篇
  1987年   25篇
  1986年   23篇
  1985年   10篇
  1984年   16篇
  1983年   5篇
  1982年   17篇
  1981年   15篇
  1980年   11篇
  1979年   6篇
  1978年   9篇
  1977年   10篇
  1976年   10篇
  1974年   3篇
  1973年   2篇
排序方式: 共有2292条查询结果,搜索用时 281 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
3.
《Cell reports》2020,30(1):98-111.e5
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   
4.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
5.
6.
7.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   
8.
Summary Using cloned cDNA for human 2-macroglobulin (A2M) as a probe, mink-Chinese hamster hybrid cells were analysed. The results allowed us to assign a gene for A2M to mink chromosome 9. Breeding tests demonstrated that the Lpm-locus coding for other related -macroglobulin protein and the gene for peptidase B (PEPB) are linked 11±3 cm apart. The PEPB gene is located on mink chromosome 9, and hence, the Lpw-locus is on the same mink chromosome. The relationship of the genetic systems controlling the isotypically different -macroglobulins in mink serum are discussed.  相似文献   
9.
The population dynamics of Moniliformis moniliformis was studied in ‘free-ranging’ laboratory rats, Rattus norvegicus, presented with different relative density levels of M. moniliformis in cockroaches, Periplaneta americana. Changes in selected population parameters of the negative binomial distribution were evaluated as indicators of changes in aggregation. A significant increase in the degree of aggregation of parasites occurred as a result of the increase in relative density of infective stages available to the rats. This increase in aggregation was due to the increase in over-dispersion that occurred in female rats only. The degree of aggregation in females was found to be significantly higher than that in males at both treatment levels. The best indicators of the degree of aggregation were found to be the ratio of the variance to the relative density and the ratio of the log-variance to log-relative density. Changes in k were not correlated with changes in over-dispersion or the relative density.  相似文献   
10.
M Akke  S Forsén 《Proteins》1990,8(1):23-29
To investigate the contribution to protein stability of electrostatic interactions between charged surface residues, we have studied the effect of substituting three negatively charged solvent exposed residues with their side-chain amide analogs in bovine calbindin D9k--a small (Mr 8,500) globular protein of the calmodulin superfamily. The free energy of urea-induced unfolding for the wild-type and seven mutant proteins has been measured. The mutant proteins have increased stability towards unfolding relative to the wild-type. The experimental results correlate reasonably well with theoretically calculated relative free energies of unfolding and show that electrostatic interactions between charges on the surface of a protein can have significant effects on protein stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号