首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2188篇
  免费   178篇
  国内免费   106篇
  2023年   25篇
  2022年   26篇
  2021年   48篇
  2020年   52篇
  2019年   76篇
  2018年   77篇
  2017年   65篇
  2016年   41篇
  2015年   50篇
  2014年   78篇
  2013年   121篇
  2012年   83篇
  2011年   93篇
  2010年   83篇
  2009年   74篇
  2008年   105篇
  2007年   97篇
  2006年   88篇
  2005年   92篇
  2004年   57篇
  2003年   65篇
  2002年   63篇
  2001年   64篇
  2000年   45篇
  1999年   49篇
  1998年   51篇
  1997年   70篇
  1996年   47篇
  1995年   47篇
  1994年   35篇
  1993年   34篇
  1992年   44篇
  1991年   34篇
  1990年   31篇
  1989年   30篇
  1988年   33篇
  1987年   28篇
  1986年   36篇
  1985年   29篇
  1984年   45篇
  1983年   26篇
  1982年   35篇
  1981年   37篇
  1980年   19篇
  1979年   5篇
  1978年   10篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1973年   4篇
排序方式: 共有2472条查询结果,搜索用时 31 毫秒
1.
The introduction of either PGF (10?7 M) or TPA (10?7 M) stimulated, ouabain-sensitive 86Rb+ influx at 30 min in postconfluent 3T3-4 mouse fibroblast cultures by 117% and 124%, respectively. Both TPA and PGF at these concentrations stimulated the incorporation of 3H-TdR into DNA. TPA had the greatest stimulatory effect, which was similar to that obtained with 10% fetal calf serum. In accord with the idea that modulation of membrane processes such as Na+/K+ pump activity in fibroblasts may reflect important events related to the initiation of DNA synthesis, it was observed that in both 3T3-4 and C3H-1 0T½ cells there were parallel increases in 3H-TdR incorporation and ouabain-sensitive 86Rb+ influxes with 10?7 M TPA, whereas PGF stimulated a significant increase in 3H-TdR incorporation in 3T3-4 but not C3H-10T½ cells and only marginal increases in ouabain-sensitive 86Rb+ influx in both. Therefore, although there appears to be a close correlation between Na+/K+ pump activation and subsequent S-phase entry following TPA stimulation, a similar correlation for PGF cannot be confirmed.  相似文献   
2.
The non-receptor tyrosine phosphatase PTPN22 has a vital function in inhibiting antigen-receptor signaling in T cells, while polymorphisms in the PTPN22 gene are important risk alleles in human autoimmune diseases. We recently reported that a key physiological function of PTPN22 was to prevent naïve T cell activation and effector cell responses in response to low affinity antigens. PTPN22 also has a more general role in limiting T cell receptor-induced proliferation. Here we present new data emphasizing this dual function for PTPN22 in T cells. Furthermore, we show that T cell activation modulates the expression of PTPN22 and additional inhibitory phosphatases. We discuss the implication of these findings for our understanding of the roles of PTPN22 in regulating T cell responses and in autoimmunity.  相似文献   
3.
The Rhynchosciara americana C3-22 gene is located in an amplified domain and is developmentally expressed. The aim of the present work was to identify intrinsically bent DNA sites in a segment containing the gene promoter and downstream sequence. The results indicated that this gene is flanked by intrinsically bent DNA sites. Three bent DNA sites (b?3, b?2, and b?1) were localized in the promoter, and one was localized downstream of the gene (b+1). These sites had helical parameters that confirmed the curved structure, as well as segments with left-handed superhelical writhe. In silico analysis of the promoters of four other insect genes, which encode secreted polypeptides, showed that they all had curved structures and similar helical parameters. Correlation with other results indicates that the detected intrinsically bent DNA sites that flank the C3-22 gene might be a consensus feature of the gene structure in the amplified domains.  相似文献   
4.
5.
Summary Previous work has shown that the monoclonal antibody 22/18 identifies progenitor cells (blastemal cells) which depend on the nerve for their division in the early stages of limb regeneration in the newt,Notophthalmus viridescens. This antibody also reacts with cultured cells derived from the newt limb, and the intensity of immunoreactivity appears related to cell density and differentiation into myotubes. We report here that the monoclonal antibody 22/18 recognizes a polypeptide (22/18 antigen) which is intracellular and filamentous. Double staining of cells with 22/18 monoclonal antibody and antibodies against various cytoskeletal components indicates that the epitope is expressed on an intermediate filament component. Although this antibody is specific for blastemal cells in cryostat sections of the regenerating limb, its reactivity on immunoblots is not confined to this tissue. The 22/18 antigen is differentially affected by aldehyde fixatives distinguished by the spacing of their reactive groups. While formaldehyde fixation impairs detection of the antigen, ethylene glycol-bis[succinic acid n-hydroxysuccinimide ester] reveals the antigen in sections of normal and regenerating limbs in a distribution that is consistent with the one obtained from immunoblots. We suggest that the 22/18 monoclonal antibody detects a change in protein conformation, probably related to changes in the physiological state of the cell, that occurs transiently during regeneration and possibly during development.  相似文献   
6.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
7.
Epithelial Na channels are apparently pore-forming membrane proteins which conduct Na much better than any other biologically abundant ion. The conductance to Na can be 100 to 1000 times higher than that to K. The only other ions that can readily get through this channel are protons and Li. Small organic cations cannot pass through the channel, and water may also be impermeant. The selectivity properties of epithelial Na channels appear to be determined by at least three factors: A high field-strength anionic site, most likely a carboxyl residue of glutamic or aspartic acid residues on the channel protein, probably accounts for the high conductance through these channels of Na and Li and to the low conductance of K, Rb and Cs. A restriction in the size of the pore at its narrowest point probably accounts for the low conductance of organic cations as well as the possible exclusion of water molecules. The outer mouth of the channel appears to be negatively charged and may control access to the region of highest selectivity and may serve as a preliminary selectivity filter, attracting cations over anions. These conclusions are illustrated by the cartoon of the channel in Fig. 3. This picture is obviously both fanciful and simplified, but its general points will hopefully be testable. It leaves open a number of important questions, including: does amiloride block the channel by binding within the outer mouth? what does the inner mouth of the channel look like, and does this part of the channel contribute to selectivity? and what, if any, are the interactions between the features of the channel that impart selectivity and those that control the regulation of the channel by hormonal and other factors?  相似文献   
8.
Summary Nonstationary pump currents which have been observed in K+-free Na+ media after activation of the Na,K-ATPase by an ATP-concentration jump (see the preceding paper) are analyzed on the basis of microscopic reaction models. It is shown that the behavior of the current signal at short times is governed by electrically silent reactions preceding phosphorylation of the protein; accordingly, the main information on charge-translocating processes is contained in the declining phase of the pump current. The experimental results support the Albers-Post reaction scheme of the Na,K-pump, in which the translocation of Na+ precedes translocation of K+. The transient pump current is represented as the sum of contributions of the individual transitions in the reaction cycle. Each term in the sum is the product of a net transition rate times a dielectric coefficient describing the amount of charge translocated in a given reaction step. Charge translocation may result from the motion of ion-binding sites in the course of conformational changes, as well as from movement of ions in access channels connecting the binding sites to the aqueous media. A likely interpretation of the observed nonstationary currents consists in the assumption that the principal electrogenic step is the E1-P/P-E2 conformational transition of the protein, followed by a release of Na+ to the extracellular side. This conclusion is supported by kinetic data from the literature, as well as on the finding that chymotrypsin treatment which is known to block the E1-P/P-E2 transition abolishes the current transient. By numerical simulation of the Albers-Post reaction cycle, the proposed mechanism of charge translocation has been shown to reproduce the experimentally observed time behavior of pump currents.  相似文献   
9.
Summary Two major types of lysozymec (M and P) occur in the mouse genus,Mus, and have been purified from an inbred laboratory strain (C58/J) ofM. domesticus. They differ in physical, catalytic, and antigenic properties as well as by amino acid replacements at 6 of 49 positions in the amino-terminal sequence. Comparisons with four other mammalian lysozymesc of known sequence suggest that M and P are related by a gene duplication that took place before the divergence of the rat and mouse lineages. M lysozyme is present in most tissues; achieves its highest concentration in the kidney, lung, and spleen; and corresponds to the lysozyme partially sequenced before from another strain ofM. domesticus. InM. domesticus and several related species, P lysozyme was detected chiefly in the small intestine, where it is probably produced mainly by Paneth cells. A survey of M and P levels in 22 species of muroid rodents (fromMus and six other genera) of known phylogenetic relationships suggests that a mutation that derepressed the P enzyme arose about 4 million years ago in the ancestor of the housemouse group of species. Additional regulatory shifts affecting M and P levels have taken place along lineages leading to other muroid species. Our survey of 187 individuals of wild house mice and their closest allies reveals a correlation between latitude of origin and level of intestinal lysozyme.  相似文献   
10.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号