首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
  国内免费   3篇
  2024年   1篇
  2022年   3篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.  相似文献   
2.
3.
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.  相似文献   
4.
Recently, highly sensitive nanotubular structures mediating membrane continuity between mammalian cells have been discovered. With respect to their peculiar architecture, these membrane channels were termed tunneling nanotubes (TNTs). TNTs could form de novo between animal cells leading to the generation of complex cellular networks. They have been shown to facilitate the intercellular transfer of organelles as well as, on a limited scale, of membrane components and cytoplasmic molecules. It has been proposed that TNTs represent a novel and general biological principle of cell-to-cell communication and it becomes increasingly apparent that they fulfill important functions in the physiological processes of multicellular organisms.  相似文献   
5.
PrrC is a Sco homologue in Rhodobacter sphaeroides that is associated with PrrBA, a two-component signal transduction system that induces photosynthesis gene expression in response to a decrease in oxygen tension. Although Sco proteins have been shown to bind copper the observation that they are structurally-related to thioredoxins suggested that they might possess thiol-disulfide oxidoreductase activity. Our results show that PrrC reduces Cu(2+) to Cu(+) and possesses disulfide reductase activity. These results indicate that some bacterial Sco proteins may have biochemical properties that are distinct from those of mitochondrial Sco proteins.  相似文献   
6.
Two types of hydroponic bioreactors were used to investigate the mechanisnistic changes during phytoremediation of perchlorate under different root-zone conditions. The bioreactors included: (1) an aerobic ebb-and-flow system planted with six willow trees, and (2) individual willow trees grown in sealed root-zone bioreactors. Rhizosphere probes were used to monitor for the first time during phytoremediation of perchlorate, diurnal swings in oxidation-reduction potential (E(H)), dissolved oxygen (DO), and pH. Radiolabeled (36Cl-labeled) perchlorate was used as a tracer in a subset of the sealed bioreactor experiments to quantify the contribution of phytodegradation and rhizodegradation mechanisms. Rhizodegradation accounted for the removal of 96.1 +/- 4.5% (+/-95% CI) of the initial perchlorate dose in experiments conducted in sealed hydroponic bioreactors with low DO and little or no nitrate N. Meanwhile, the contribution of rhizodegradation decreased to 76 +/- 14% (+/-95% CI) when nitrate (a competing terminal electron acceptor) was provided as the nitrogen source. Slower rates of phytoremediation by uptake and phytodegradation were observed under high nitrate concentrations and aerobic conditions, which allowed perchlorate to persist in solution and resulted in a higher fraction uptake by the plant. Specifically, the rate of removal of perchlorate from bulk solution ranged from 5.4 +/- 0.54 to 37.1 +/- 2.25 mg/L/d (+/-SE) in the absence of nitrate to 1.78 +/- 0.27 to 0.46 +/- 0.02 mg/L/d (+/-SE) at high nitrate concentration. The results of this study indicate that the root-zone environment of plants can be manipulated to optimize rhizodegradation and to minimize undesirable processes such as uptake, temporal phytoaccumulation, and slow phytodegradation during phytoremediation of perchlorate. Rhizodegradation is desired because contaminants resident in plant tissue may remain an ecological risk until completely phytodegraded.  相似文献   
7.
The components of biological membranes are present in a physical mixture. The nonrandom ways that the molecules of lipids and proteins mix together can strongly influence the association of proteins with each other, and the chemical reactions that occur in the membrane, or that are mediated by the membrane. A particular type of nonrandom mixing is the separation of compositionally distinct phases. Any such phase separation would result in preferential partition of some proteins and lipids between the coexisting phases, and thus would influence which proteins could be in contact, and whether a protein could find its target. Phase separation in a plasma membrane would also influence the binding of molecules from outside the cell to the membrane, including recognition proteins on viruses, bacteria, and other cells. The concept of these and other events associated with membrane phase separation are sometimes grouped together as the “raft model” of biological membranes. Several types of experiments are aimed at detecting and characterizing membrane phase separation. Visualizing phase separation has special value, both because the immiscibility is so decisively determined, and also because the type of phase can often be identified. The fluorescence microscope has proven uniquely useful for yielding images of separated phases, both in certain cell preparations, and especially in models of cell membranes. Here we discuss ways to prepare useful model membranes for image studies, and how to avoid some of the artifacts that can plague these studies.  相似文献   
8.
Reactions of silver(I) perchlorate with tetraphenyl-cyclopentadiene (Ph4H2C5) have isolated two novel silver(I) bridged tetraphenyl-pyrylium complexes: [Ag(ClO4)(Ph4HC5O+)](ClO4) (1) and (2), depending on moisture-content of the reactants. Structure studies using single-crystal X-ray diffraction have showed that complex 1 contains a distorted tetrahedral metal center bridging two neighboring peripheral phenyl rings of one pyrylium cation and two perchlorate anions, whereas 2 involves a three-coordinate metal ion interacting with a pair of phenyl rings and one water molecule, leaving two perchlorate anions free from coordination. For both complexes, the precursor ligand Ph4H2C5 undergoes a ring-enlargement reaction, forming a six-membered pyrylium cation. The fundamentals of the synthesis, structure characterization and some properties are discussed.  相似文献   
9.
We investigated the interaction between apolipoprotein E (apoE) and ceramide (CER)-enriched domains on the particles, by using lipid emulsions containing sphingomyelin (SM) or CER as model particles of lipoproteins. The sphingomyelinase (SMase)-induced aggregation of emulsion particles was prevented by apoE. CER increased the amount of apoE bound to emulsion particles. The confocal images of CER-containing large emulsions with two fluorescent probes showed three-dimensional microdomains enriched in CER. SMase also induced the formation of CER-enriched domains. We propose apoE prefers to bind on CER-enriched domains exposed on particle surface, and thus inhibits the aggregation or fusion of the particles.  相似文献   
10.
In this study we have addressed the ability of the glycolipid transfer protein (GLTP) to transfer anthrylvinyl-galactosylceramide at different pH and sodium chloride concentrations, and the ability of three different mutants to transfer the fluorescently labeled galactosylceramide between donor and acceptor model membranes. We constructed single tryptophan mutants with site-directed mutagenesis where two of the three tryptophan (W) of wild-type human GLTP were substituted with phenylalanine (F) and named W85 GLTP (W96F and W142F), W96 GLTP (W85F and W142F) and W142 GLTP (W85F and W96F) accordingly. Wild-type GLTP and W96 GLTP were both able to transfer anthrylvinyl-galactosylceramide, but the two variants W85 GLTP and W142 GLTP did not show any glycolipid transfer activity, indicating that the tryptophan in position 96 is crucial for transfer activity. Tryptophan fluorescence emission showed a blue shift of the maximal emission wavelength upon interaction of glycolipid containing vesicle with wild-type GLTP and W96 GLTP, while no blue shift was recorded for the protein variants W85 GLTP and W142 GLTP. The quantum yield of tryptophan emission was highest for the W96 GLTP protein whereas W85 GLTP, W142 GLTP and wild-type GLTP showed a lower and almost similar quantum yield. The lifetime and anisotropy decay of the different tryptophan mutants also changed upon binding to vesicles containing galactosylceramide. Again wild-type GLTP and W96 GLTP showed similar behavior in the presence of vesicles containing glycolipids. Taken together, our data show that the W96 is involved not only in the activity of the protein but also in the interaction between the protein and glycolipid containing membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号