首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   3篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
Activity levels of 7-ethoxycoumarin O-deethylase (ED), aminopyrine N-demethylase (APD), p-nitroanisoleO-demethylase (p-NAD) and glucose-6-phosphate dehydrogenase (G-6-PDH) were determined in incubation mixtures for the liver-microsomal assay (LMA) at time 0 and after 1 and 2 h incubation under conditions for mutagenic assay. The experiments were performed with S9 liver fractions from mice (induced with Na-phenobarbital and β-naphthoflavone) and rats (induced with Aroclor 1254) with and without G-6-PDH in the incubation mixtures.

In the absence of G-6-PDH the activities were significantly lower at time 0 in the mouse. The pattern of stability, however, was similar for the activities, with an increase of stability after 1 and 2 h of pre-incubation (an exception for p-NAD).

Only ED activity showed a similar behaviour in the rat. No differences were present for APD and p-NAD activities at time 0 in the rat, but the enzyme stabilities were significantly decreased after 2 h of incubation (about 15% and 10% for APD and p-NAD respectively) in the absence of G-6-PDH.

At time 0, the amounts of G-6-PDH differed between mouse and rat fractions; however, during the incubations for LMA they decreased by about 57% and 53% for the two species, respectively. In addition to the above biochemical results, the presence of exogenous G-6-PDH in the incubations for the mutagenic assay, significantly increased the mitotic gene conversion and mitotic crossing-over of dimethylnitrosamine (DMN) and AR2MNFN (a nitroimidazo[2,1-b]thiazole) in the D7 strain of Saccharomyces cerevisiae.  相似文献   

2.
Cultured human fibroblasts from healthy donors were incubated for 30 min with nine different benzo[a]pyrene (BP) derivatives in the presence or absence of liver microsomes from 3-methylcholanthrene treated rats. The induction and repair of DNA strand breaks were analysed by alkaline unwinding and separation of double and single stranded DNA (SS-DNA) by hydroxylapatite chromatography immediately after the incubation or at various times after the treatment. In the absence of microsomes DNA stand breaks were detected in fibroblasts exposed to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP) and the three BP dihydrodiols (BP-4,5-, BP-7,8- or BP-9,10-dihydrodiol). After removal of the BP derivatives from the medium the DNA strand breaks disappeared within 24 h. alpha-Naphthoflavone (alpha-NF) caused a decrease in the induction of strand breaks by 1-, 3- and 9-OH-BP but did not affect the induction of strand breaks in cells exposed to BP-7,8-dihydrodiol. In the presence of microsomes DNA strand breaks were found after exposure to 30 microM of each of the six BP phenols (1-, 2-, 3-, 7-, 9- or 11-OH-BP), as well as BP-7,8- and 9,10-dihydrodiol. In contrast BP-4,5-dihydrodiol did not induce strand breaks under these conditions. The induction of strand breaks by BP-7,8-dihydrodiol was enhanced in the presence of cytosine-1-beta-D-arabinofuranoside (AraC). In all cases the DNA strand breaks had disappeared 24 h after removal of the BP derivatives and microsomes except after treatment with BP-7,8-dihydrodiol.  相似文献   
3.
Hexachlorobenzene (HCB) produced increases in ethoxyresorufin (ERR) O-deethylase, aryl hydrocarbon hydroxylase (AHH) and aminopyrine N-demethylase activities in rat liver microsomes which were intermediate between those produced by phenobarbital and 3,4-benzpyrene (BP). α-Naphthoflavone (ANF) selectively inhibited ERR activity in BP and HCB-induced microsomes (94% and 88%). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of liver microsomes indicated that HCB did not produce a detectable increase in a polypeptide with electrophoretic properties similar to those of purified cytochrome P-448 (Mr = 56 000). However, HCB did induce a polypeptide with Mr = 53 000 corresponding to one of two polypeptide bands induced by BP. This polypeptide may represent a second form of cytochrome P-448. Purification of HCB to remove possible dibenzo-p-dioxin impurities did not alter the ‘mixed-type’ induction produced by HCB. In contrast to HCB, all other chlorinated benzenes tested resembled phenobarbital as inducers.  相似文献   
4.
Drug mediated induction of cytochrome P450 was studied in cultures of hepatocytes that had never been cultured in the presence of serum. Propylisopropylacetamide induced a five-fold increase in cytochrome P450, approximating in ovo induced levels, when triiodothyronine and/or dexamethasone were included in the culture medium. Insulin was apparently not required for this induction. Cytochrome P450, free of cytochrome oxidase, could be fully recovered from cell homogenates in a 8700g supernatant, by use of a buffer containing 0.2% Emulgen.  相似文献   
5.
Aliesterases (carboxylesterases) are serine esterases that can serve a protective role for the target acetylcholinesterase (AChE) during organophosphorus insecticide intoxication because the former esterases are alternate phosphorylation sites. The levels of aliesterase activity in liver and plasma and AChE activity in brain regions were investigated after the intravenous administration of paraoxon (P = O) into female rats. The rats were pretreated intraperitoneally with β-naphthoflavone (BNF), which decreases hepatic aliesterase activity following a 3 day in vivo treatment, and/or tri-o-totyl phosphate (TOTP) to inhibit aliesterases. The liver aliesterases were inhibited less by P = O in BNF-treated rats than in control rats, which suggests that either BNF exposure may have resulted in aliesterases that are less sensitive to P = O inhibition or BNF may have altered P = O's availability. The BNF treatment did not seem to alter the degree of inhibition of the brain AChE activity following the low dosage of paraoxon (0.04 mg/kg). However, the brain AChE activity in the P = O/TOTP/BNF-treated rats was lower than that in the P = O/TOTP-treated rats, suggesting that BNF also caused changes in systems affecting the disposition of P = O in addition to the changes in the hepatic aliesterases. At the high dosage of paraoxon (0.12 mg/kg), the AChE and aliesterase activities showed a pattern similar to that of the low dosage. This suggests that the aliesterases, as altered by BNF exposure, even when nearly completely inhibited, did not alter the response of the target enzyme, AChE, and, therefore, the magnitude of the toxic response. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 263–268, 1997.  相似文献   
6.
The objective of this study was to evaluate whether alpha-naphthoflavone (ANF) modulates aryl hydrocarbon receptor (AhR) signaling in rainbow trout (Oncorhynchus mykiss). AhR and cytochrome P450 1A1 (CYP1A1) protein and mRNA content were used as indictors of AhR signaling. Primary culture of rainbow trout hepatocytes were exposed to different concentrations of ANF (10(-9)-10(-5) M), while beta-naphthoflavone (BNF 10(-10)-10(-6) M) and a combination of ANF and BNF were used to elucidate the impact of ANF on AhR signaling. ANF increased AhR and CYP1A1 protein expression in a concentration-related manner; the maximal induction was about 50% that of BNF. Despite the differences in protein content between ANF and BNF stimulation, the maximal AhR and CYP1A1 mRNA abundance seen with the high concentrations of ANF and BNF were similar. ANF significantly decreased ( approximately 50%) BNF-induced AhR protein expression (only at 10(-9) M), but not CYP1A1 protein and gene expression. In addition, ANF at a sub-maximal concentration (10(-7) M) did not affect BNF-induced AhR protein content, but increased the sensitivity of hepatocytes to BNF-mediated CYP1A1 protein expression. Taken together, the mode of action of ANF appears similar to BNF, including modulation of AhR expression and activation of AhR-mediated signaling in rainbow trout hepatocytes. Overall, ANF is not only a partial AhR agonist, but may also modify BNF-mediated AhR signaling in trout hepatocytes.  相似文献   
7.
Each chromosome occupies its own-specific space called a ‘territory’ within the interphase nucleus, and the arrangement of chromosome territories (CTs) is important in epigenetic mechanisms. The molecular mechanism to determine the positioning of CTs, however, remains unknown. On the other hand, dioxin is known to be the typical environmental pollutant that affects a wide variety of biological events in many species. Here, we show that dioxin enlarges the minimum distance between chromosome 12 and chromosome 16 territories in human preadipocyte cells, and the alteration of chromosome positioning is canceled by an aryl hydrocarbon receptor (AhR) antagonist α-naphthoflavone. Thus, AhR may be a key molecule to regulate chromosome positioning. Our results suggest a novel effect of dioxin toxicity, and demonstrate a clue to reveal the novel molecular mechanism for the arrangement of CTs.  相似文献   
8.
Induction of cytochrome P4501A (CYP1A) in fish is an important biomarker in marine monitoring programmes but a number of factors complicate interpretation of data based on catalytic activity. To provide additional analytical tools, we have cloned and sequenced entire (dab) and partial cDNAs (flounder, turbot, sand eel) from several fish species. A detailed analysis comparing the new sequences to those on the database (13 sequences) is presented and identifies an invariant, teleost-specific sequence (195-IVVSVANVICGMCFGRRYDH-214) which might be the basis for production of a species cross-reactive antibody. Northern and slot blots of fish RNA (sand eel, plaice, turbot, flounder and dab) showed extensive cross-species hybridisation with each of the cDNAs (sand eel, plaice, turbot, flounder and dab). The exception was turbot RNA, which only gave adequate hybridisation when the turbot probe was used. Attempts to normalise the hybridisation data to GAPDH mRNA were not satisfactory since there were significant species differences in expression of this gene and expression was suppressed (20–40%) by β-naphthoflavone treatment. The CYP1A probes indicated induction levels relative to untreated dab of: plaice (five-fold); turbot (12-fold); flounder (12-fold); and dab (10-fold). The study demonstrates the relative ease with which species-specific molecular probes can be generated and used.  相似文献   
9.
Aminopyrine-N-demethylase and p-nitroanisole-O-demethylase activities were determined in incubation mixtures for the liver microsomal assay at time zero and after 1 h of incubation in the conditions for the mutagenic assay. The experiments were performed with the S9 liver fraction of mice in the basal state and induced with sodium phenobarbital, β-naphthoflavone or both. Lipid peroxidation was also determined.

The experiments were repeated with female mice and also in the presence of styrene, as an example of a xenobiotic substance. The activity of pNAD was much more stable than that of APD in all the conditions tested. The pattern of stability, however, was similar for the two activities: more stable than controls with S9 fractions from β-NF-induced mice, less stable than controls in PB-induced mice, intermediate between controls and PB-induced mice in those with combined induction by PB + βNF. Styrene 50 mM in the incubation mixtures led to a marked inactivation of enzymic activity, similar in all cases and reaching about 90% in 1 h. S9 fractions from female mice gave enzymes slightly more stable in almost all cases. Lipid peroxidation was appreciably more elevated in basal than in induced animals.

It was concluded that, for a mutagenesis test on an unknown xenobiotic, S9 fractions from mice following PB and β-NF induction are to be preferred from the point of view of activation.  相似文献   

10.
Monolayer cultures of rat hepatocytes activated tris(2,3-dibromopropyl)phosphate (Tris-BP) more efficiently than 2-acetylaminofluorene (AAF), to genotoxic products which caused mutations in co-cultures of S. typhimurium. In contrast, AAF caused a greater genotoxic response in the hepatocytes than Tris-BP, as judged by the increase in DNA-repair synthesis measured by liquid scintillation counting of 3H-TdR incorporated into DNA isolated from the nuclei of the hepatocytes. Covalent binding of 0.05 mM 3H-Tris-BP to cellular proteins occurred at a similar rate as covalent binding of 0.25 mM 14C-AAF. Tris-BP was the more cytotoxic of the two compounds as determined by leakage of cellular lactate dehydrogenase into the culture medium. The observed differences in the cytotoxic and genotoxic responses between Tris-BP and AAF were probably caused by differences in the nature of their reactive metabolites with respect to stability, lipophilicity and/or their interactions with variuos cellular nucleophilic sites. The relative DNA-repair synthesis induced by an AAF exposure for 18 h decreased with time after plating of isolated hepatocytes. Tris-BP first caused an increase in the relative DNA-repair synthesis up to 27 h after plating, whereafter the response declined reaching control values using cultures 75 h after plating. In parallel with the decreased relative response in DNA-repair synthesis with time, the background radioactivity in isolated nuclei from untreated cells increased both when the hepatocytes were incubated in the presence or absence of hydroxyurea to inhibit replicative DNA synthesis. Increased DNA-repair synthesis was demonstrated as early as 3 h after commencing exposure to the test substances. While the induced DNA-repair synthesis caused by Tris-BP remained constant after 6 h of exposure, the response caused by AAF increased with increased exposure time beyond 6 h. To assess the role of different metabolic pathways in the genotoxic and cytotoxic responses of Tris-BP and AAF, the hepatocytes were exposed to test substances in the presence of various metabolic inhibitors for 3 h, whereafter the cell medium was removed and replaced by cell-culture medium containing 3H-TdR and hydroxyurea. The cytochrome P-450 inhibitor metyrapone decreased both the genotoxic and cytotoxic effects of Tris-BP, while α-naphthoflavone reduced the genotoxic effect of AAF. The addition of glutathione (GSH) or N-acetylcysteine decreased both the cytotoxic and genotoxic effects of Tris-BP, while cellular depletion of GSH by diethylmaleate increased these effects. Manipulations in the cellular levels of sulhydryl-containing substances in the hepatocytes by these agents had little effects on the DNA-repair synthesis caused by AAF. The results indicate that such a hepatocyte culture system may be very useful as a tool to study mechanisms involved in the formation of cytotoxic and/or genotoxic metabolites from various xenobiotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号