首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2007年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1978年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Comparison of the three-dimensional structure of hyperthermophilic and mesophilic β-glycosidases shows differences in secondary structure composition. The enzymes from hyperthermophilic archaea have a significantly larger number of β-strands arranged in supernumerary β-sheets compared to mesophilic enzymes from bacteria and other organisms. Amino acid replacements designed to alter the structure of the supernumerary β-strands were introduced by site directed mutagenesis into the sequence encoding the β-glycosidase from Sulfolobus solfataricus. Most of the replacements caused almost complete loss of activity but some yielded enzyme variants whose activities were affected specifically at higher temperatures. Far-UV CD spectra recorded as a function of temperature for both wild type β-glycosidase and mutant V349G, one of the mutants with reduced activity at higher temperatures, were similar, showing that the protein structure of the mutant was stable at the highest temperatures assayed. The properties of mutant V349G show a difference between thermostability (stability of the protein structure at high temperatures) and thermophilicity (optimal activity at high temperatures).  相似文献   
2.
Myrosinase isoenzymes are known to be encoded by two different families of genes denoted MA and MB. Nucleotide sequence analysis of a Brassica napus genomic clone containing a gene for myrosinase revealed it to be a pseudogene of the MA family. The gene spans more than 5 kb and contains at least 12 exons. The exon sequence of the gene is highly similar to myrosinase cDNA sequences. However, the gene displays three potential or actual pseudogene characters. Southern blot analysis using probes from the 3 portions of the genomic and B. napus MA and MB cDNA clones showed that MA type myrosinases are encoded by approximately 4 genes, while MB type myrosinases are encoded by more than 10 genes in B. napus. Northern blots with mRNA from seeds and young leaves probed with the MA-and MB-specific probes showed that the MA and MB myrosinase gene families are differentially expressed. Myrosinases are highly similar to proteins of a -glycosidase enzyme family comprising both -glycosidases and phospho--glycosidases of as diverged species as archaebacteria, bacteria, mammals and plants. By homology to these -glycosidases, putative active site residues in myrosinase are discussed on the basis of the similarity between -glycosidases and cellulases.  相似文献   
3.
A simple and rapid spectrophotometric assay for following the hydrolysis of flavonol 3-glycosides has been developed. The assay profits from the fact that peroxidase converts flavonol aglycones to their corresponding 2,3-dihydroxyflavanones, producing a large shift in UV absorption, whereas flavonol 3-glycosides are not attacked. The amount of liberated aglycone can therefore be calculated from the decrease of flavonol absorption at 350–380 nm. A horseradish peroxidase-H2O2 test system can be used to investigate the hydrolysis of most flavonol 3-glycosides, whereas quercetin 3-glycosides can be tested using a peroxidase preparation from Mentha sp. which uses O2 as cofactor rather than H2O2. Flavonol 3-glycoside synthesis, e.g. with UDP-sugars as cofactors, may also be tested by this particular system. Various plants and plant cell cultures were screened for kaempferol and quercetin 3-glycoside specific β-glycosidases. However, in no case could any specific activity be detected.  相似文献   
4.
The synthesis of (R)- and (S)-3-(4-hydroxyphenyO-1-methylpropyl-β-D-glucopyranosides has been achieved by two enzymatic steps, namely an oxido-reduction step involving alcohol dehydrogenases from different origin for the preparation of both aglycones in enantiomeric pure form, and a transglycosidation step involving a thermophilic β-glucosidase from the archaeon Sulfolobus solfataricus.  相似文献   
5.
Screening of fresh leaves and other plant organs revealed the presence of cyanogenesis in 25 species in 16 families out of a total of 488 species in 79 families vouchered in natural lowland rain forest in Costa Rica. In a qualitative screening of a random sample based on seven one-hectare inventories of woody plants, we found cyanogenesis in 4.0% of all species; these represented 2.5% of all individuals present, and 3.0% of the total basal area of stems. The frequency of occurrence of cyanogenic compounds was higher in reproductive plant parts than in leaves, and highest in pericarps. Cyanogenesis was found in Annona amazonica, Annona pittieri, Cymbopetalum costaricense, Tabebuia chrysantha, Sloanea tuerckheimii, Sapium laurifolium, Lecointea amazonica, Carpotroche platyptera, Klayana odorata, Byrsonima crispa, Miconia splendens, Inga acuminata, Chaunochiton kappleri, Passiflora ambigua, P. pittieri, P. talamancensis, P. vitifolia, Panopsis costaricensis, Faramea pawibractea, Paullinia capreolata, Pouteria amygdalicarpa, P. campechiana, P. subrotata, P. torta and Rinorea guatemalensis. Some taxonomic implications are discussed. The identity of cyanogenic constituents found in dried material of these species is presented, as is the total cyanogenic potential (CNp) of 11 positive species. The CNp ranged from less than 5 to approx. 2000 mg kg-1 f.w. Several species were cyanogenic only in some individuals. A total of 463 species gave no positive test for cyanogenic glycosides. Tests on leaves and seeds of Ampelocera macrocarpa indicated the content of a rare and unknown volatile constituent.  相似文献   
6.
Abstract: New information about the proteins of the phosphotransferase system (PTS) and of phosphoglycosidases of homofermentative lactic acid bacteria and related species is presented. Tertiary structures were elucidated from soluble PTS components. They help to understand regulatory processes and PTS function in lactic acid bacteria. A tertiary structure of a membrane-bound enzyme II is still not available, but expression of Gram-positive genes encoding enzymes II can be achieved in Escherichia coli and enables the development of effective isolation procedures which are necessary for crystallization experiments. Considerable progress was made in analysing the functions of structural genes which are in close vicinity of the genes encoding the sugar-specific PTS components, such as the genes encoding the tagatose-6-P pathway and the 6-phospho-β-glycosidases. These phosphoglycosidases belong to a subfamily of the β-glycosidase family I among about 300 different glycosidases. The active site nucleophile was recently identified to be Glu 358 in Agrobacterium β-glucosidase. This corresponds to Glu 375 in staphylococcal and lactococcal 6-phospho-β-galactosidase. This enzyme is inactivated by mutating Glu 375 to Gln. Diffracting crystals of the lactococcal 6-P-β-galactosidase allow the elucidation of its tertiary structure which helps to derive the structures for the entire glycosidase family 1. In addition, a fusion protein with 6-phospho-β-galactosidase and staphylococcal protein A was constructed.  相似文献   
7.
The use of commercially available mesophilic glycosidases in the enzymatic synthesis of glycosides of different types is a well established method suffering from some drawbacks such as a poor yield. Substrates with three or four hydroxyl groups have been subjected to enzymatic glucosylation using crude homogenate of the thermophilic archaeon Sulfolobus solfataricus containing a β-glycosidase activity able to transfer glucose, galactose and fucose from different donors. The stereochemistry of this reaction was interpreted in terms of interaction with a possible “glucose” active site of the enzyme. In addition masked or protected derivatives of tetritols and some simple unsaturated alcohols were glycosylated yielding glycosides in yields very competitive with those obtained using mesophilic enzymes, examples of further chemical manipulation of these compounds were reported. When using a scarce amount of acceptor, a reasonable amount of products could be obtained by adding different aliquots of donor at time intervals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号