首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
1.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLA cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluoroscence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with β-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the β-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   
2.
3.
It is well established that normal patterns of epithelial cell proliferation and metabolism, and of fiber cell differentiation and maturation are essential for the maintenance of transparency in the ocular lens. Several factors, including exposure to high levels of sugars, have been known to result in the compromise of lens transparency. For example, initiation of lens cell damage by galactose induces lens epithelial cells to proliferate. Elevated levels of c-myc mRNA have usually been correlated with rapid cell growth and increased entry of cells into the S phase. Therefore, changes in c-myc mRNA levels may provide an early indication of the stimulation of lens epithelial cells to proliferate and differentiate, which has been postulated to be an early and important event in response to lens cell injury by galactose. By Northern blot hybridization analysis we quantitated c-myc mRNA levels in the lens capsule epithelia of rats (1) exposed to galactose, and (2) undergoing a partial recovery from the galactose-induced cell damage. At the onset of lens cell damage, we find c-myc mRNA to elevate to 6-fold by 24 hr, and by 48 hr decreases to about 3-fold the normal levels. During recovery, c-myc mRNA continues to be expressed at high levels approaching a 10-fold increase by day 12, then decreasing to levels of about 8-fold the control by day 30. The 24 h transitory elevation in c-myc mRNA in lens epithelial cells is in accord with our previous observations on the 24 h increase in MP26, crystallin and aldose reductase mRNAs following a high influx of galactose. Therefore, the elevation in c-myc mRNA as well suggest that galactose appears to cause lens cells to undergo an early transitory period of gene induction following the exposure of lens cells to galactose.  相似文献   
4.
5.
6.
To characterize the differences between fibrotic myofibroblasts and normal fibroblasts, we studied two differentiation markers: -smooth muscle (SM) actin, a specific marker of myofibroblast differentiation, and -actin, which is overexpressed in the fibrotic tissue. Experiments were performed on fibroblasts isolated from normal pig skin and on subcutaneous myofibroblasts isolated from pig radiation-induced fibrosis. Three culture models were used: cells in monolayers, equivalent dermis, consisting of fibroblasts embedded into a matrix composed of type I collagen, and in vitro reconstituted skin, in which the matrix and containing life fibroblasts were overlaid with keratinocytes. Samples were studied using immunofluorescence and western-blotting. In monolayers cultures, both fibrosis and normal cells expressed -SM actin. Furthermore, similar amounts of -actin protein were found. In these conditions, the resulting alterations in the phenotypes of cells made comparison of cultured fibrotic and normal cells irrelevant. Under the two 3-D culture models, normal fibroblasts no longer expressed -SM actin. They expressed -actin at the basal level. Moreover, the fibrotic myofibroblasts in both 3-D models retained their differentiation features, expressing -SM actin and overexpressing -actin. We found that this normalization was mainly related to the genomic programmation acquired by the cells in the tissue. Cellular motility and microenvironment were also involved, whereas cellular proliferation was not a major factor. Consequently, both three-dimensional models allowed the study of radiation-induced fibrosis in vitro, provided good extrapolations to in vivo conditions and avoided certain of culture artefacts.  相似文献   
7.
Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals.Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity.Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.  相似文献   
8.
A detailed study was made of the persistence and expression of a plasmid-enclosed reporter gene construct after intramuscular injection into the somatic muscle tissue of juvenile Nile tilapia Oreochromis niloticus and also the effect of injecting a potentially growth-promoting gene construct. The plasmid-enclosed DNA proved stable at the site of injection, lasting in some cases for up to 6 months, and was, at a very low frequency, detected in gonad tissue, indicating occasional substantial movement from the injected muscle site. It was observed that the reporter gene and regulatory sequences were also functional within the somatic cells. In a comparison of expression levels by direct somatic injection, the 1·6 kb tilapia β-actin regulatory sequence (tiβAP) resulted in c. three-fold higher β-galactosidase activity than the 4·7 kb carp β-actin regulatory sequence (cβAP) when spliced to the lacZ gene. The enhancer element near the end of first intron in the tiβAP, when co-injected with tiβAP/lacZ plasmid at a 3:1 ratio, drove significantly higher reporter activity in somatic cells than the tiβAP/lacZ sequence alone. The introduction of a growth-promoting construct, the Nile tilapia growth hormone gene driven by a tiβAP, yielded no detectable growth enhancement.  相似文献   
9.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   
10.
根据猪α-actin基因已知DNA序列设计合成了两个特异性引物,以猪基因组DNA为模板,通过PCR扩增得到α-actin 5'调控序列,然后与线虫ω-3脂肪酸去饱和酶基因cDNA、去除CMV启动子的表达载体pcDNA3.1连接构成肌肉特异性表达载体pcDNA3.1-AF,小鼠股四头肌注射该重组载体,RT-PCR检测证明...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号