首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2007年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The α-factor mating pheromone induces a transient intracellular alkalinizatin of MATa cells within minutes after exposure to the pheromone, and is the earliest biochemical event that can be identified subsequent to the exposure. Dissipation of the pheromone induced pH gradient, using 2,4-dinotrophenol or sodium orthovanadate, does not inhibit the biological response of the yeast to the pheromone such as mating and ‘schmoo’ formation. These findings suggest that the pheromone mediated pH change per se is not a part of the transmembrane signalling but rather the consequence of a biochemical reaction triggered by the α-pheromone interaction with its receptor and may have a permissive effect on the pheromonal response. The cdc25ts mutation causes MATa cells to become nonresponsive to α-factor subsequent to a shift to the restrictive temperature, suggesting that the CDC25 gene product participates in the pheromone response pathway.  相似文献   
2.
 Interleukin 16 (IL-16) is synthesized as a 67 000 M r precursor (pro-IL-16), but only a carboxy terminal part of 12 000–14 000 M r is secreted by CD8(+) lymphocytes. This lymphokine binds to CD4 and has been shown to induce migration, affect the activation state of T cells, and inhibit immunodeficiency virus replication. It has been suggested that CD8(+) cell-derived soluble factors play a pivotal role in protecting natural-host nonhuman primates from developing immunodeficiency following SIV infection. In a first attempt to address this question, we cloned and sequenced the IL-16 cDNA from different primates. Here we report the pro-IL-16 sequence from chimpanzees, African green monkeys (AGM), rhesus macaques, and cynomolgus macaques. In order to compare and analyze structural motifs possibly involved in processing, intracellular targeting, or secretion, we extended our study to the New World monkeys saimiri and aotus and to the mouse. Alignments of deduced amino acids reveal that the human protein shares 99% similarity to that of chimpanzees, approximately 95% to rhesus, cynomolgus and AGM, about 90% to aotus and saimiri, and 77.5% to the mouse. Phylogenetic analyses revealed the expected evolutionary groupings. Received: 27 August 1997 / Revised: 7 October 1997  相似文献   
3.
This study was conducted to optimize the expression of human CB2 cannabinoid receptors in methylotrophic yeast Pichia pastoris (P. pastoris). Two major species of expressed CB2 proteins were seen on Western blot, i.e., a 42 kDa band which matches the calculated molecular weight for tagged CB2, and a 52/55 kDa doublet. Treatment of membranes with N-glycosidase F or inclusion of tunicamycin in the culture medium during induction resulted in the disappearance of the 55 kDa, but not the 52 kDa band, suggesting that the 3 kDa extra in the 55 kDa band is due to N-glycosylation, but the 10 kDa extra in the 52 kDa band is not due to N-glycosylation. Anti-FLAG M1 antibody had a much higher preference for the 42 kDa band over the 52/55 kDa doublet, and a 10 kDa fragment recognized by anti-FLAG M2 antibody was generated by CNBr digestion of the 52/55 doublet. These data strongly support the hypothesis that the 10 kDa increase in molecular weight was due to unprocessed alpha-factor sequence. This conclusion was further validated by finding several peptide sequences for alpha-factor fragments at the N-terminal of the CB2 receptor using pepsin/chymotrypsin digestion and LC/MS/MS approaches. Importantly, unprocessed alpha-factor was found to be associated with poor ligand binding. In addition, controlling the level of CB2 protein expression was found to be critical for minimizing the presence of unprocessed alpha-factor sequence. The information gained from this study should aid the proper expression of not only CB2 receptor but also other members of the GPCR family in P. pastoris.  相似文献   
4.
Summary MATa cells of Saccharomyces cerevisiae defective in both the SST1 and SST2 gene products exhibit selfarrest when they express the MF1 gene under the control of the GAL1 promoter. This reponse to endogenously produced pheromone can be alleviated by mutations which prevent the production of, or response to, -factor. Suppressors of the self-arrest phenotype include a class of mutants which remain responsive to low levels of pheromone, but are resistant to high levels of -factor. One of these mutants has been mapped to chromosome X, 31 cM distal to SUP4, and defines a new locus designated STE18.  相似文献   
5.
6.
The paper presents the analysis of the side-chain conformation angles of amino acids in 90% non-identical protein structures. The analysis has been carried out using 113,699 residues, which is higher compared to the previous studies. In the present study, one more quality check, namely, temperature factor cut-off, has been introduced in addition to resolution and R-factor cut-offs. Due to this, the present calculation reveals the approximate values for the minimum and the maximum of the three-rotameric states of chi1. In addition, the conformation angles chi2 and chi3 have been addressed with the improved data set. The results reported here could be of use in protein modeling.  相似文献   
7.
The α-mating pheromone receptor encoded by the STE2 gene of the yeast Saccharomyces cerevisiae is a G protein-coupled receptor (GPCR) that is homologous to the large family of GPCRs that mediate multiple types of signal transduction in mammals. We have screened libraries of mutant receptors to identify dominant negative alleles that are capable of interfering with the function of a co-expressed normal receptor. Two dominant negative alleles have been recovered in this manner. In addition, we find that previously isolated loss-of-function mutations in the α-factor receptor exhibit dominant negative effects. Detection of the dominant effects requires high-level expression of the mutant receptors but does not require a high ratio of mutant to normal receptors. Cellular levels of the normal receptors are not affected by co-expression of the dominant negative alleles. Expression of the mutant receptors does not interfere with constitutive signaling in a strain that lacks the G protein α subunit encoded by GPA1, indicating that interference with signaling occurs at the level of the receptor or the interacting G protein. Expression of increased levels of G protein subunits partially reverses the dominant negative effects. The dominant negative behavior of the mutant receptors is diminished by deletion of the SST2 gene, which encodes an RGS (Regulator of G protein Signaling) protein involved in desensitization of pheromone signaling. The most likely explanation for the dominant negative effects of the mutations appears to be the existence of an interaction between unactivated receptors and the trimeric G protein that titrates the G protein away from the normal receptors or renders the G protein insensitive to receptor activation. This interaction appears to be mediated by the SST2 gene product. Received: 15 January 1999 / Accepted: 25 March 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号