首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
中枢神经系统损伤后其再生能力较弱已被人们所熟知,原因在于髓磷脂抑制物如Nogo、MAG、Omgp等抑制因子的作用,这些抑制因子通过与神经元上的Nogo受体(NgR)特异性结合,发挥对神经轴突再生的抑制作用。Nogo是一种存在于中枢神经系统少突胶质细胞上的髓磷脂蛋白,其作用主要在于神经细胞损伤后抑制其突触再生,这同时也是对损伤部位其他细胞免于进一步损伤的保护作用。存在于细胞表面的Nogo-66结构是与NgR特异性结合的功能域。NgR是一种存在于神经元表面,传递抑制轴突生长信号的复合共受体。近年来随着对NgR、Nogo及其下游信号通路其他相关蛋白研究的深入,提示多种神经系统疾病与之相关。我们简要综述近年来关于NgR的研究进展。  相似文献   
2.
《生命科学》2007,19(1):67-67
在神经系统发育过程中,新生神经元的轴突要经历漫长的历程才能到达预定的脑区,然后与靶区神经元建立突触联系进而形成神经系统复杂的网络系统。因此,发育中轴突的生长和导向是形成正常神经系统功能的前提和保证;相反,轴突发育的异常会导致多种神经系统疾病,包括智力障碍和癫痫发作等。  相似文献   
3.
神经细胞粘附分子(neural cell adhesion molecule,NCAM)是一种主要表达于神经系统的糖蛋白,通过亲同性及亲异性结合介导细胞与细胞与细胞外基质间的相互作用,参与细胞的识别,迁移,轴突生长,细胞信号转导,学习和记忆等过程。硫酸化氨基聚糖可调节脑发育中的细胞分化,轴突生长及中枢神经系统中神经元的再生,可能参与了与学习和记忆相关的神经结构功能的调节。这些作用可能与神经细胞粘附分子的亲异性结合有关。  相似文献   
4.
陈钟芳  马俊涛 《生理学报》1992,44(4):370-378
在胚胎和新生的中枢神经系统(CNS)内,发育中的纤维束通道能引导轴突的生长。为了了解发育中的纤维束通道能否引导成年CNS轴突的生长,将胚胎海马伞移植到成年大鼠的海马,两周后,用AChE组织化学方法检查移植物内的胆碱能纤维。结果如下:在胚胎的海马伞移植物内出现大量的胆碱能纤维,但在成年的海马伞移植物内没有宿主的胆碱能纤维长入;如果在移植胚胎海马伞的同时,切断宿主的海马伞-穹窿通路,则在胚胎移植物和宿主海马内均无胆碱能纤维;将胚胎海马伞作成悬浮液进行移植,在移植部位,仅能看到少数长的胆碱能纤维;但是若把胚胎海马伞的组织碎片粘附在硝化纤维素滤纸条周围,再移植到成年大鼠海马内,来自宿主海马的大量胆碱能纤维被吸引围绕着滤纸条并沿其表面生长。结果似乎表明:胚胎海马伞或胚胎海马伞碎片都能有效引导宿主海马胆碱能纤维的生长。因此,胚胎海马伞和其它发育中的CNS纤维束通道可能是引导成年CNS轴突生长的良好天然基质。  相似文献   
5.
Mammalian central nervous system neurons show asymmetry during early brain development that defines the elaborate function of neural circuitry (Kriegstein and Noctor, 2004). Many intracellular signaling pathways, which are important for the transition to the polarized state and the development of axons and dendrites, have been identified (Barnes and Polleux, 2009). How these pathways are initiated during neuronal development in vivo remained elusive until Yi et al.  相似文献   
6.
神经轴突生长抑制因子Nogo 家族的研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
Nogo家族是一类神经轴突生长抑制因子家族,目前成员包括Nogo-A,Nogo-B,Nogo-C三个亚型。Nogo家族成员因C末端具有保守的RHD结构域而归属于RTNs家族,表明它们的分布和功能与内质网密切相关。Nogo家族C末端还具有一个进化保守的66氨基酸的功能段称为Nogo-66,体外表达的Nogo-66片段具有抑制神经突生长的作用。Nogo家族成员结构上的区别主要表现在不同剪切长短的N末端序列。Nogo-A主要在中枢和外周神经系统中广泛分布,Nogo-C主要分布在骨骼肌,而Nogo-B则几乎遍布于各种组织与细胞之中。目前,发现可介导Nogo胞内信号转导通路的受体主要是膜外糖蛋白偶联的NgR和跨膜受体p75NTR组成的共受体,但NgR与Nogo-A在胚胎发育中时空表达并不同步提示可能还有其它受体存在。虽然Nogo家族作为神经轴突生长抑制因子被发现,但越来越多的研究表明其可能在胚胎发育、细胞凋亡或神经退行性变等重大事件中扮演重要角色。本文拟就Nogo家族迄今为止突出的研究进展作一综述,旨在为下一步的功能研究工作提供理论参考和依据。  相似文献   
7.
成年哺乳动物的中枢神经系统(CNS)受损后,解剖学上的修复水平非常有限。因神经纤维再生明显受阻,往往造成神经损伤后永久性的功能缺陷。在成年CNS抑制轴突生长的因子中,有一类是髓磷脂蛋白(myelin),而Nogo是这类蛋白中的一种,由少突神经胶质细胞产生,抑制轴突的生长。通过不同的启动子和差别剪接,nogo基因会产生三种主要的转录产物Nogo-A、-B和-C。  相似文献   
8.
神经细胞粘连分子L1是神经系统发育过程中介导细胞-细胞相互作用的重要分子。L1能启动轴突的延伸并与神经细胞迁移有关,在神经系统发育和维持方面起重要作用。L1基因突变会导致智力迟钝,痉挛性截瘫,脑积水和其他的发育异常。L1基因突变导致遗传性神经细胞疾病的分子机理目前还不清楚,本研究介绍L1转基因小鼠的构建。在小鼠神经细胞粘连分子L1细胞外区段(L1ECD)cDNA的末端上加一终止密码子后,置于神经系统特异性的pCAMKⅡ启动子之后,构建成L1ECD转基因DNA。为验证构建物的正确性,将其与真核细胞表达载体pCEP4连接并转染C6细胞,实现了L1ECD在C6细胞中的表达,并观察了L1ECD对体外培养的C6细胞和原代培养的神经元的效应。采用显微注射的方法将L1ECD转基因DNA导入小鼠受精卵,产出的仔鼠经尾组织基因组DNA Southern杂交分析和组织RNA Northern杂交分析,证明L1ECD转基因DNA已整合在转基因小鼠基因组内,并呈脑特异性表达。  相似文献   
9.
神经系统作为一个复杂的体系,在其发育过程中轴突需要延伸较长的距离才能与下一级神经元或靶细胞形成突触。在这个复杂的移动过程中,神经元轴突在空间分布上形成了精确有序的结构。过去认为这种有序结构的形成主要由形态发生素的化学浓度梯度来指导,而最近的研究发现力学因素对调控轴突的延伸速度与方向发挥着重要的作用。因此,轴突的延伸本质上是一个力化学耦合过程。本文将结合自己过去的工作论述力学因素对轴突延伸的调控机制及相关的信号转导。这一领域的研究将为认识对神经系统疾病的发生以及神经再生提供重要的参考。  相似文献   
10.
目的研究轴突生长抑制因子重组DNA疫苗对转基因阿尔茨海默症小鼠的预防治疗。方法轴突生长抑制因子重组DNA疫苗肌肉注射APP/PS1双转阿尔茨海默症模型小鼠。设野生对照组、模型对照组、空载体对照组、疫苗组。水迷宫实验检测小鼠行为学差别。结果疫苗组小鼠在4.5月龄水迷宫实验中学习记忆能力较模型对照及空载体对照组有显著差异(P〈0.05)。结论肌肉注射轴突生长抑制因子DNA重组疫苗能够改善小鼠学习记忆能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号