首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
水溶性C60与C60衍生物的生物学效应研究进展   总被引:5,自引:0,他引:5  
本文对近几年来有关C_(60)及其衍生物的生物学效应的研究作了较为系统的评述,包括对生物酶活性的抑制、对DNA的选择性剪切作用、对细胞生长的影响、C_(60)及其衍生物的作用机理以及应用前景等5方面的内容。  相似文献   
2.
实验对树干毕赤酵母(Pichia stipitis)进行了4个阶段共400 h连续恒化培养,在不同阶段以30.0 g/L葡萄糖作为基本碳源,添加30.0或15.0 g/L的木糖,通过控制温度(35±1)℃,进气量100~150mL/min,搅拌转速250~300 r/min。4个阶段共建立4个连续培养的"稳态"。对碳元素进行物料衡算发现,四个阶段碳元素回收率分别为118.0 %、105.6 %、113.5 %和94.7 %。对4个近似"稳态"的碳元素的代谢流向进行分析发现:将近50.0 %左右碳元素流向产物酒精,其次是CO2和酵母细胞;木糖醇浓度与流入底物中木糖浓度有直接关系,在相同发酵条件下流入的木糖浓度越大代谢生成木糖醇浓度也越高;实验所采用的通气条件更适合底物为30.0 g/L葡萄糖和30.0 g/L木糖混合液的连续发酵。  相似文献   
3.
After converting cropland to forest, carbon Is sequestered in the aggradlng blomass of the new forests, but the question remains, to what extent will the former arable soil contribute as a sink for CO2? Quantifying changes In soil carbon Is an Important consideration In the large-scale conversion of cropland to forest. Extensive field studies were undertaken to Identify a number of suitable sites for comparison of soil properties under pasture and forest. The present paper describes results from a study of the effects of first rotation larch on soil carbon In seven stands In an afforestation chronosequence compared with adjacent Korean pine, pasture, and cropland. An adjacent 250-year-old natural forest was Included to give Information on the possible long-term changes In soil carbon In northeast China In 2004. Soil carbon Initially decreased during the first 12 yr before a gradual recovery and accumulation of soil carbon occurred. The Initial (0-12 yr) decrease In soil carbon was an average 1.2% per year among case studies, whereas the Increase In soil carbon (12-33 yr) was 1.90% per year. Together with the carbon sequestration of forest floors, this led to total soil carbon stores of approximately 101.83 Mg/hm^2 over the 33-year chronosequence. Within the relatively short time span, carbon sequestration occurred mainly In tree blomees, whereas soil carbon stores were clearly higher In the 250-year-old plantation (184 Mg/hm^2). The ongoing redistribution of mineral soil carbon In the young stands and the higher soil carbon contents In the 250-year-old afforested stand suggest that nutrient-rich afforestation soils may become greater sinks for carbon (C) In the long term.  相似文献   
4.
Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ^13C values and environmental factors. Results showed that δ^13C values in R. soongorica ranged from -22.77‰ to -29.85‰ and that the mean δ^13C value (-26.52‰) was higher than a previously reported δ^13C value for a different desert ecosystem. This indicates that R. soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ^13C values and environmental factors demonstrated that the foliar δ^13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ^13C values in R. soongorica was not obvious and there was no significant correlation between the δ^13C values and mean annual temperature. We conclude that different distribution trends in δ^13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R. soongorica. This pattern of δ^13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.  相似文献   
5.
In C3 plants, carbon isotope discrimination (Δ) has been proposed as an indirect selection criterion for grain yield. Reported correlations between Δ and grain yield however, differ highly according to the analyzed organ or tissue, the stage of sampling, and the environment and water regime. In a first experiment carried out in spring wheat during two consecutive seasons in the dry conditions of northwest Mexico (Ciudad Obregon, Sonora), different water treatments were applied, corresponding to the main water regimes available to spring wheat worldwide, and the relationships between Δ values of different organs and grain yield were examined. Under terminal (post‐anthesis) water stress, grain yield was positively associated with Δ in grain at maturity and in leaf at anthesis, confirming results previously obtained under Mediterranean environments. Under early (pre‐anthesis) water stress and residual moisture stress, the association between grain Δ and yield was weaker and highly depended on the quantity of water stored in the soil at sowing. No correlation was found between Δ and grain yield under optimal irrigation. The relationship between Δ and grain yield was also studied during two consecutive seasons in 20 bread wheat cultivars in the Ningxia region (Northern China), characterized by winter drought (pre‐anthesis water stress). Wheat was grown under rainfed conditions in two locations (Guyuan and Pengyang) and under irrigated conditions in another two (Yinchuan and Huinong). In Huinong, the crop was also exposed to salt stress. Highly significant positive associations were found between leaf and grain Δ and grain yields across the environments. The relationship between Δ and yield within environments highly depended on the quantity of water stored in the soil at sowing, the quantity and distribution of rainfall during the growth cycle, the presence of salt in the soil, and the occurrence of irrigation before anthesis. These two experiments confirmed the value of Δ as an indirect selection criterion for yield and a phenotyping tool under post‐anthesis water stress (including limited irrigation).  相似文献   
6.
《生命世界》2008,(11):6-6
美国科学家最近在一项研究中发现,当植物受到外部伤害时,能够向根部发出化学信号以寻求帮助,接收到信号的根部会分泌出一种富含碳元素的化学物质苹果酸,以吸引土壤中的枯草芽孢杆菌,在植物根部周围形成一层抗菌保护膜,帮助它们尽陕康复。除此以外,还有研究发现,谷类植物在受到一些害虫侵扰时,会散发出一种鸡尾酒般的气味,从而吸引害虫的天敌寄生黄蜂。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号