首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   7篇
  国内免费   20篇
  58篇
  2021年   1篇
  2020年   1篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1989年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
以完全培养液(HP,1000μmol·L^-1KH2PO4)培养15d的玉米自交系KH5(磷高效)和SD502(磷低效)幼苗转入低磷(LP,5μmol·L^-1KH2PO4)条件下培养20d后,检测叶中几种与光合作用有关参数的结果表明,低磷下两自交系玉米叶中无机磷含量、植株生物量和叶片的净光合速率(Pn)均下降,KH5的降幅小于SD502。两自交系玉米叶片以高照度光(1600μmol·m^-2·s^-1)照射1h后,叶片的PSII实际光化学效率(ФPSII)、PSII最大光化学效率(Fv/Fm)和表观光合电子传递速率(ETR)均下降,而初始荧光(F0)、非光化学猝灭(NPQ)和天线热耗散(HDR)均升高。在强光胁迫过程中,玉米幼苗叶片发生光抑制,自交系SD502在低磷下的光抑制比KH5严重。  相似文献   
2.
外源水杨酸对光抑制条件下小麦叶片光合作用的影响   总被引:11,自引:1,他引:11  
以浓度为50、100、200 mg·kg-1的水杨酸(SA)预先处理灌浆期的小麦叶片,可有效防护强光所致的氧化损伤,维持较高的超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性,减轻丙二醛(MDA)积累.叶片在光抑制条件下,可维持较高的通过PSⅡ电子传递速率(Fm/Fo)、PSⅡ原初光化学效率(Fv/Fm)、PSⅡ量子效率(ΦPSⅡ)、光化学猝灭系数(qP)、净光合速率(Pn)和较低的非光化学猝灭系数(qNP).其中,以较低浓度SA(50 mg·kg-1)的效果较好.  相似文献   
3.
银杏叶片光合作用对强光的响应   总被引:47,自引:0,他引:47  
银杏叶片遭受光量子通量密度为1200μmolm^-2s^-1的强光胁迫后,净光合速率、气孔导度、细胞间隙CO2浓度、PSⅡ光化学效率和表观量子效率都下降,而叶片在505nm处的光吸收、初始荧光水平和荧光和非光化学猝灭上升。在去除强光胁迫数小时之后,这些参数都不能完全恢复。  相似文献   
4.
以小麦品种矮抗58为材料,采用0.3 mmol/L水杨酸(SA)溶液预处理灌浆期小麦叶片,以水预处理为对照,进行3种不同的光温处理:适宜温度中等光强(25℃,600 μmol m-2 s-1)2h、高温强光(38℃,1600μmol m-2 s-1)2h、高温强光2h后置于适宜温度中等光强下恢复3h.测定不同光温条件下,小麦叶绿体的Deg1蛋白酶、D1蛋白和PSⅡ功能的变化及SA的调节效应.结果表明,高温强光胁迫导致Deg1蛋白酶和D1蛋白降解,PSⅡ功能发生可逆损伤.与对照相比,水杨酸预处理不仅能够抑制高温强光下小麦叶绿体Deg1蛋白酶和D1蛋白的降解,维持较高的PSⅡ原初光化学效率(Fv/ Fm)、实际光化学效率(φPSⅡ)、电子传递速率和净光合速率(Pn),而且加快回到非逆境下PSⅡ功能的恢复.  相似文献   
5.
在青海省都兰县香日德镇东盛村, 以中国科学院西北高原生物研究所培育的春小麦(Triticum aestivum)品种为材料, 主要采用调制叶绿素荧光分析手段, 研究了抽穗期旗叶光合作用的光抑制现象, 并分析了非光化学猝灭组分的光诱导和非光诱导耗散的量子产量变化。结果表明, 高原春小麦各品种间旗叶光合色素含量和比叶重存在差异; 全晴天3个典型时段准确暗适应20 min后的PSII最大光化学效率(Fv/Fm)的比较分析证实, 高原春小麦存在着光合作用的光抑制现象, Fv/Fm的降低是由于PSII反应中心的可逆失活; 稳态作用光下PSII有效光化学效率(Fv′/Fm′)易受持续强光胁迫的影响, 而PSII实际光化学效率(ΦPSII)在各春小麦品种间的差异略为明显; 上下午间4个春小麦品种的光化学猝灭系数(qP)和非光化学猝灭系数(NPQ)呈较一致的变化趋势, 显然qPNPQ既属品种的内禀特性, 又与强太阳光胁迫的累积密切相关; 非光化学猝灭组分中光诱导的PSII调节性能量耗散的量子产量(ΦNPQ)所占比例较大, 下午时分ΦNPQ的上调反映了高原春小麦对青藏高原持续强光胁迫的驯化适应。  相似文献   
6.
枇杷果皮响应高温强光胁迫的蛋白质组分析   总被引:1,自引:0,他引:1  
为探讨枇杷[Eriobotrya japonica(Thunb.)Lindl.]果皮在高温强光胁迫下的蛋白质组分变化,采用蛋白质组学方法分析了果实日灼抗性差的枇杷种质‘WDYDB’果皮蛋白质对高温强光胁迫的应答反应。结果表明,在自然高温强光胁迫与遮光处理(对照)下,枇杷果皮蛋白质双向电泳图谱中表达量差异在2倍以上的蛋白点共有31个;通过MALDI-TOF-TOF/MS质谱分析成功鉴定出26个差异蛋白点,包括11个下调蛋白和15个上调蛋白。根据这些蛋白功能,可将其分为防御应答、碳水化合物和能量代谢、光合作用、其它等4类蛋白。同时,对这些蛋白质在高温强光胁迫下的功能和作用进行了讨论。这些差异蛋白质参与了枇杷对高温强光胁迫的响应。  相似文献   
7.
用10 mmol·L-1 CaCl2溶液预处理灌浆期小麦叶片,以水预处理为对照,然后将预处理植株进行高温强光(35 ℃,1600 μmol·m-2·s-1)胁迫,测定胁迫处理过程中小麦旗叶光合电子传递速率、净光合速率、叶绿素荧光参数及D1蛋白的变化,以研究外源Ca2+对高温强光胁迫下小麦叶片类囊体膜D1蛋白磷酸化和PSⅡ功能的影响.结果表明:CaCl2溶液预处理使小麦叶片在高温强光逆境下PSⅡ反应中心发生可逆失活,有效抑制了高温强光下D1蛋白的净降解,保持了较高的D1蛋白磷酸化水平,暗恢复后PSⅡ反应中心活性迅速恢复,全链电子传递速率和PSⅡ电子传递速率恢复至对照水平,维持了较高的PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率(ФPSⅡ)、光化学猝灭系数(qP)和净光合速率(Pn).表明外源Ca2+通过调节小麦叶绿体D1蛋白的周转,促进了PSⅡ的正常运转,减轻了高温强光胁迫对叶片光合机构的损伤.  相似文献   
8.
为了研究水杨酸(SA)对高温强光胁迫下小麦叶片类囊体膜D1蛋白磷酸化和PSⅡ功能的影响,用0.5 mmol·L-1 SA溶液预处理灌浆期小麦叶片,以水预处理为对照,然后将预处理植株进行高温强光(35 ℃,1 600 μmol·m-2·s-1)处理,测定胁迫处理过程中小麦旗叶光合电子传递速率、净光合速率、叶绿素荧光参数及D1蛋白的变化.结果表明:SA预处理有效抑制了高温强光下D1蛋白的净降解,保持了较高的D1蛋白磷酸化水平、全链电子传递速率和PSⅡ电子传递速率,维持了较高的PSⅡ原初光化学效率(Fv/Fm)、实际光化学效率(ФPSⅡ)、光化学淬灭系数(qP)和净光合速率(Pn).表明外源SA通过调节小麦叶绿体D1蛋白的周转,减轻了高温强光胁迫对叶片光合机构的损伤,有利于PSⅡ的正常运转.  相似文献   
9.
秦舒浩  李玲玲  陈娜娜 《生态学杂志》2010,21(11):2830-2835
选用西葫芦(Cucurbita pepo)品种“阿兰”一代为试验材料,研究了外源Ca2+处理对高温强光交叉胁迫下西葫芦幼苗生长特征、光合特性及叶绿素荧光参数的影响.结果表明:高温强光胁迫下,5~20 mmol·L-1 Ca2+处理的西葫芦幼苗具有较高的株高和较大的叶面积,其叶绿素、类胡萝卜素含量及光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)和光化学猝灭系数(qP)均较高,而胞间CO2浓度(Ci)和非光化学猝灭系数(NPQ)较低,其中以10 mmol·L-1Ca2+处理效果最好.说明5~20 mmol·L-1Ca2+处理能有效缓解高温强光对西葫芦光合机构的不可逆伤害,使其保持较快的光合电子传递速率和较高的PSⅡ电子传递活性.Ca2+处理浓度超过40 mmol·L-1时对高温强光胁迫没有缓解效应.  相似文献   
10.
快速叶绿素荧光动力学可以在无损情况下探知叶片光合机构的损伤程度, 快速叶绿素荧光测定和分析技术(JIP-test)将测量值转化为多种具有生物学意义的参数, 因而被广泛应用于植物光合机构对环境的响应机制研究。该文研究了超大甜椒(Capsicum annuum)幼苗在强光及不同NaCl浓度胁迫下的荧光响应情况。与单纯强光胁迫相比, NaCl胁迫引起了叶绿素荧光诱导曲线的明显改变, 光系统II (PSII)光抑制加重, 同时PSII反应中心和受体侧受到明显影响, 而且高NaCl浓度胁迫下PSII供体侧受伤害明显, 同时PSI反应中心活性(P700+)在盐胁迫下明显降低。这些结果表明, NaCl胁迫会增强强光对超大甜椒光系统的光抑制, 并且浓度越高抑制越明显, 但对PSI的抑制作用低于PSII。高NaCl浓度胁迫易对PSII供体侧造成破坏, 且PSI光抑制严重。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号