首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   2篇
  国内免费   8篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2014年   14篇
  2013年   20篇
  2012年   13篇
  2011年   22篇
  2010年   14篇
  2009年   5篇
  2008年   5篇
  2007年   13篇
  2006年   6篇
  2005年   4篇
  2004年   9篇
  2003年   7篇
  2002年   2篇
  1998年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
1.
Andreas Barth 《BBA》2007,1767(9):1073-1101
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.  相似文献   
2.
We have used N epsilon-dansyl-L-lysine as a fluorescent membrane probe, to study cells taken from tissues concerned with immune function. There is a striking similarity between the staining selectivity of this compound and that reported by others for merocyanine 540. Both compounds stain leukemic, human, peripheral leukocytes, an erythroleukemia line, and some mouse bone marrow cells, suggesting common selectivity for a membrane feature of hemopoietic cells. Both compounds fail to stain red blood cells, normal human leukocytes, mouse spleen and thymus cells. We have recently reported that dansyl-lysine apparently selects for cholesterol-free phospholipid domains in liposomes and now report similar selectivity for merocyanine 540 staining of liposomes.  相似文献   
3.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   
4.
5.
6.
The electrospraying technique provides nano and microparticles that can be used as drug delivery systems. The aims of this study were, firstly, to optimize the influent parameters of electrospraying for the manufacture of a Bosentan (BOS) nanoparticulate platform, and secondly, to evaluate its physicochemical properties and in vitro biopharmaceutical behavior. Particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier transformed Infrared spectroscopy (FTIR). Drug loading, encapsulation efficiency and kinetic dissolution were determined. Additionally, Bosentan release assays at 24 and 72 h were performed in vitro to evaluate biopharmaceutical properties of nano-scaffolds by diffusion technique through dialysis bag. The nanostructures had heterogeneous sizes predominantly smaller than 550 nm and they were semicrystalline according to PXRD, indicating a partial amorphization of BOS during the encapsulation in the polymer matrix. FT-IR and DSC showed an absence of chemical interactions between BOS and ε-Polycaprolactone (PCL), suggesting that both components behaved as a physical mixture in these particles. The drug loading was 25.98%, and the encapsulation efficiency was 58.51%. Additionally, the release assays showed an extended and controlled release of BOS, in comparison to non-encapsulated BOS. These data also showed to fit with the Cubic Root kinetic dissolution. As a conclusion, we demonstrate that the use of electrospraying for the manufacture of BOS (or similar drugs) controlled release nanoplatforms would represent an interesting contribution in the development of new therapeutic alternatives for the treatment of pathologies such as pulmonary hypertension and other related diseases. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2748, 2019.  相似文献   
7.
We investigated which PKC isoforms are involved in high glucose-induced protection against hypoxic injury. Treatment for 48 h with high glucose (22 mM) markedly increased the expression of PKC- epsilon in the particulate fraction (213+/-22.1% of the control) but had no effect on other types of PKC isoforms, suggesting that the high glucose-induced increase in PKC expression is isoform-specific. The mRNA level for PKC- epsilon was also substantially increased, reaching its peak after 4h of high glucose treatment. The high glucose increased PKC-epsilon activity in the particulate fraction up to 183+/-32.2% of the control. During hypoxia, the amount of PKC-epsilon in the particulate fraction was remarkably diminished in the low glucose-treated cells, but remained at a higher level in high glucose-treated cells. The treatment with epsilon V1-2 (10 microM), a specific inhibitor of PKC epsilon, abolished the protective effect of high glucose against hypoxia. These results suggest that isoform-specific induction of PKC-epsilon is involved in high glucose-induced protection against hypoxic injury in heart-derived H9c2 cells.  相似文献   
8.
Human high affinity receptor for IgE is a membrane glycoprotein multichain complex presenting two extracellular Ig modules in its alpha-chain (D1D2). The receptor IgE binding region is located within the membrane-proximal module D2, while the N-terminal module D1 appears to promote an optimal receptor conformation for IgE binding. To understand the structural relationship between the two modules, we dissected FcepsilonRI alpha-chain into its discrete Ig units and expressed them in mammalian cells. Unexpectedly, D2 was secreted as a disulphide-linked dimer, while D1 was monomeric. Active secretion and full glycosylation of dimeric D2 suggest a native-like conformation of the protein, justifying the escape from the endoplasmic reticulum/Golgi quality control systems. We then propose a domain-swapping model for D2, in which two interdigitated polypeptide chains assume the overall conformation of two Ig modules, as observed for rat CD2 N-terminal domain. Fusion of an unrelated Ig fold moiety at the N terminus of D2 did not interfere with its dimerisation. While D1D2 assumes a correct fold, co-expression of both isolated domains in the same cell did not restore monomeric folding of D2. Thus, D1 appears to assist the appropriate folding of FcepsilonRI alpha-chain, acting as an uncleavable intramolecular chaperone-like block towards D2.  相似文献   
9.
Ho PC  Chuang YS  Hung CH  Wei LN 《Cellular signalling》2011,23(8):1396-1403
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.  相似文献   
10.
Apyrase/ATP-diphosphohydrolase hydrolyzes di- and triphosphorylated nucleosides in the presence of a bivalent ion with sequential release of orthophosphate. We performed studies of substrate specificity on homogeneous isoapyrases from two potato tuber clonal varieties: Desiree (low ATPase/ADPase ratio) and Pimpernel (high ATPase/ADPase ratio) by measuring the kinetic parameters K(m) and k(cat) on deoxyribonucleotides and fluorescent analogues of ATP and ADP. Both isoapyrases showed a broad specificity towards dATP, dGTP, dTTP, dCTP, thio-dATP, fluorescent nucleotides (MANT-; TNP-; ethene-derivatives of ATP and ADP). The hydrolytic activity on the triphosphorylated compounds was always higher for the Pimpernel apyrase. Modifications either on the base or the ribose moieties did not increase K(m) values, suggesting that the introduction of large groups (MANT- and TNP-) in the ribose does not produce steric hindrance on substrate binding. However, the presence of these bulky groups caused, in general, a reduction in k(cat), indicating an important effect on the catalytic step. Substantial differences were observed between potato apyrases and enzymes from various animal tissues, concerning affinity labeling with azido-nucleotides and FSBA (5'-p-fluorosulfonylbenzoyl adenosine). PLP-nucleotide derivatives were unable to produce inactivation of potato apyrase. The lack of sensitivity of both potato enzymes towards these nucleotide analogues rules out the proximity or adequate orientation of sulfhydryl, hydroxyl or amino-groups to the modifying groups. Both apyrases were different in the proteolytic susceptibility towards trypsin, chymotrypsin and Glu-C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号