首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2925篇
  免费   89篇
  国内免费   46篇
  2023年   15篇
  2022年   14篇
  2021年   21篇
  2020年   29篇
  2019年   54篇
  2018年   80篇
  2017年   48篇
  2016年   24篇
  2015年   31篇
  2014年   107篇
  2013年   218篇
  2012年   78篇
  2011年   146篇
  2010年   102篇
  2009年   131篇
  2008年   132篇
  2007年   137篇
  2006年   133篇
  2005年   103篇
  2004年   83篇
  2003年   59篇
  2002年   71篇
  2001年   42篇
  2000年   45篇
  1999年   50篇
  1998年   54篇
  1997年   57篇
  1996年   49篇
  1995年   36篇
  1994年   48篇
  1993年   41篇
  1992年   56篇
  1991年   47篇
  1990年   47篇
  1989年   51篇
  1988年   40篇
  1987年   60篇
  1986年   40篇
  1985年   69篇
  1984年   81篇
  1983年   61篇
  1982年   68篇
  1981年   38篇
  1980年   44篇
  1979年   21篇
  1978年   17篇
  1977年   26篇
  1975年   11篇
  1974年   18篇
  1973年   13篇
排序方式: 共有3060条查询结果,搜索用时 15 毫秒
1.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
2.
We previously isolated a Serratia marcescens O5: HI Z-54 strain which produces a new reddish-violet pigment, a peptide- ferropyrimine complex. This study showed that polymyxin B enhances the formation of the pigment about threefold. This occurs because polymyxin B in the medium causes the formation of an iron-polymyxin B complex which imposes a low iron stress on the bacteria and, in turn, enhances pigment production. This shows that polymyxin B is both a membrane-disrupting and ionophoric antibiotic.  相似文献   
3.
4.
The present research project details synthesis of new hybrid methanofullerenes based on acetylene and triazole esters of malonic acid containing 5Z,9Z-dienoic acids and fullerene C60 under Bingel-Hirsch conditions, including study of the cytotoxic activity with respect to Jurkat, K562, U937 and HL60 tumor cell lines. Hybrid methanofullerenes containing acetylenic fragments, unlike triazole substituents, were found to exhibit higher cytotoxicity, but are characterized by lower selectivity of action in relation to healthy cells.  相似文献   
5.
The distribution of carbon-11-labeled L-deprenyl, an irreversible inhibitor of monoamine oxidase type B (MAO-B), was determined in the baboon brain by positron emission tomography. The irreversible blood-to-brain transfer constant (influx constant, Ki) was measured using a complete metabolite-corrected arterial plasma concentration curve. This influx constant was used as a measure of functional enzyme activity for sequential determinations of MAO-B recovery following a single high dose of unlabeled l -deprenyl. The half-life for turnover of MAO-B was thus determined to be 30 days. Using appropriate irreversible inhibitors, this procedure should be generally useful for determining enzyme turnover rates in any organ in vivo and can be applied to some human studies as well.  相似文献   
6.
Abstract: A series of l-phenyl-1 H -3-benzazepine analogues were assessed for enantiomeric and structure-affinity relationships at human putamen D-1 dopamine receptors labelled with [3H]SCH 23390. Substitution at the 7-position of both 3-H and 3-methyl benzazepine molecules critically affected affinity for these receptors over a 500-fold range. The general rank order of potency of 7-substituents was Cl = Br ≫ CH3 > OH ≥ H. 3-Methyl substituents increased the affinity of 7-H and 7-OH compounds two- to fivefold compared to desmethyl counterparts. The displacement of [3H]SCH 23390 binding showed substantial enantioselec-tivity; the R-enantiomer of SKF 83566 was 500-fold more potent that its S-antipode. However, the displacement of [3H]spiperone binding from D-2 sites in the same tissue showed negligible enantioselectivity. Through such structure-affinity relationships, these studies may help to define the topography of the human brain D-1 dopamine receptor and guide the design of more selecive agents for functional studies.  相似文献   
7.
The synthesis of a tritiated derivative of the 5-HT1A photoaffinity probe 8-methoxy-2-[N-n-propyl, N-3-(2-nitro-4-azidophenyl)aminopropyl]aminotetralin ([3H]8-methoxy-3'-NAP-amino-PAT) allowed the use of this probe for attempting the irreversible labeling of specific binding sites in rat brain membranes. Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis of proteins solubilized from hippocampal microsomal membranes that had been incubated with 20 nM [3H]8-methoxy-3'-NAP-amino-PAT under UV light revealed a marked incorporation of 3H label into a 63-kilodalton protein termed PI. As expected of a possible correspondence between PI and 5-HT1A receptor binding sites, 3H labeling by the photoaffinity probe could be prevented by selective 5-HT1A ligands such as 8-hydroxy-2-(di-n-propylamino)tetralin, ipsapirone, buspirone, and gepirone and by N-ethylmaleimide, but not by the 5-HT2 antagonist ketanserin, noradrenaline- and dopamine-related drugs, monoamine oxidase inhibitors, and chlorimipramine. Furthermore, the regional and subcellular distributions of PI were identical to those of specific 5-HT1A binding sites. These results indicated that the binding subunit of the 5-HT1A receptor is a 63-kilodalton protein with a functionally important sulfhydryl group(s).  相似文献   
8.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   
10.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号