首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21686篇
  免费   349篇
  国内免费   662篇
  22697篇
  2023年   1161篇
  2022年   801篇
  2021年   552篇
  2020年   353篇
  2019年   724篇
  2018年   687篇
  2017年   628篇
  2016年   194篇
  2015年   217篇
  2014年   335篇
  2013年   373篇
  2012年   157篇
  2011年   1477篇
  2010年   384篇
  2009年   469篇
  2008年   472篇
  2007年   556篇
  2006年   491篇
  2005年   468篇
  2004年   640篇
  2003年   463篇
  2002年   667篇
  2001年   1049篇
  2000年   1008篇
  1999年   1054篇
  1998年   1092篇
  1997年   984篇
  1996年   488篇
  1995年   248篇
  1994年   147篇
  1993年   134篇
  1992年   118篇
  1991年   135篇
  1990年   104篇
  1989年   105篇
  1988年   100篇
  1987年   95篇
  1985年   204篇
  1984年   476篇
  1983年   460篇
  1982年   376篇
  1981年   348篇
  1980年   362篇
  1979年   336篇
  1978年   206篇
  1977年   176篇
  1976年   167篇
  1975年   152篇
  1974年   126篇
  1973年   93篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
2.
 This paper deals with the use of cladistic methods and cladograms in phylogeny reconstruction in plant groups containing numerous taxa. How accurate are the cladograms as to details? Accuracy tests at the level of details require an independently known phylogeny, which excludes most plant groups, but such tests can be carried out in domesticated and experimental plant groups which have documented pedigrees. Four such tests are known and are presented here: a new case in Gilia and three previously published cases in Avena, Hordeum, and Helianthus. The four cases include domesticated and experimental plants, use of morphological and molecular evidence, and presence of dichotomous as well as reticulate phylogenies. The cladograms of the four plant groups all differ in significant details from the known pedigrees. These results are discussed in relation to problems of interpretation of cladograms. Received March 21, 2000 Accepted August 16, 2001  相似文献   
3.
Spinosyns A and D are the active ingredients in an insect control agent produced by fermentation of Saccharopolyspora spinosa. Spinosyns are macrolides with a 21-carbon, tetracyclic lactone backbone to which the deoxysugars forosamine and tri-O-methylrhamnose are attached. The spinosyn biosynthesis genes, except for the rhamnose genes, are located in a cluster that spans 74 kb of the S. spinosa genome. DNA sequence analysis, targeted gene disruptions and bioconversion studies identified five large genes encoding type I polyketide synthase subunits, and 14 genes involved in sugar biosynthesis, sugar attachment to the polyketide or cross-bridging of the polyketide. Four rhamnose biosynthetic genes, two of which are also necessary for forosamine biosynthesis, are located outside the spinosyn gene cluster. Duplication of the spinosyn genes linked to the polyketide synthase genes stimulated the final step in the biosynthesis — the conversion of the forosamine-less pseudoaglycones to endproducts. Duplication of genes involved in the early steps of deoxysugar biosynthesis increased spinosyn yield significantly. Journal of Industrial Microbiology & Biotechnology (2001) 27, 399–402. Received 31 May 2001/ Accepted in revised form 09 July 2001  相似文献   
4.
Bidens cordylocarpa is a high polyploid species restricted in distribution to stream sides in the mountains of Jalisco, Mexico. The morphologically enigmatic species was originally described as a member of the genus Coreopsis, but later transferred to Bidens, largely because the involucral bracts appear most similar to Bidens. Characters of the cypselae, often useful in generic placement, are of no value for this species because the fruits have features not detected in either Bidens or Coreopsis. Sequences from the internal transcribed spacer region of nuclear ribosomal DNA (ITS) were used to assess the relationships of Bidens cordylocarpa. The molecular phylogeny places B. cordylocarpa in a strongly supported clade of Mexican and South American Bidens, and provides more definitive evidence of relationships than morphology, chromosome number, or secondary chemistry. Molecular, morphological, and chromosomal data suggest that B. cordylocarpa is an ancient polyploid, perhaps the remnant of a polyploid complex. Received August 28, 2000 Accepted February 11, 2001  相似文献   
5.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   
6.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
7.
Formation of a Tree having a Low Lignin Content   总被引:2,自引:0,他引:2  
Received 30 September 2001/ Accepted in revised form 26 October 2001  相似文献   
8.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
9.
The l-thyroxine binding site in human serum thyroxine-binding globulin was investigated by affinity labeling with N-bromoacetyl-l-thyroxine (BrAcT4). Competitive binding studies showed that, in the presence of 100 molar excess of BrAcT4, binding of thyroxine to thyroxine-binding globulin was nearly totally abolished. The reaction of BrAcT4 to form covalent binding was inhibited in the presence of thyroxine and the affinity-labeled thyroxinebinding globulin lost its ability to bind thyroxine. These results indicate BrAcT4 and thyroxine competed for the same binding site. Affinity labeling with 2 mol of BrAcT4/mol of thyroxine-binding globulin resulted in the covalent attachment of 0.7 mol of ligand. By amino acid analysis and high voltage paper electrophoresis, methionine was identified as the major residue labeled (75%). Lysine, tyrosine, and histidine were also found to be labeled to the extent of 8, 8, and 5%, respectively.  相似文献   
10.
Feral and laboratory flocks of rock doves (Columbalivia) show a pattern of grouped sequential exploitation when simultaneously presented with two dispersed, depleting patches of seed. This behavior contrasts with the ideal free distribution pattern shown when patches are small and concentrated. Grouped sequential exploitation consists of two phases: all pigeons first land together and feed at one patch, then leave one by one for the other patch. Departure times of individuals for the second patch are correlated with feeding rate at patch 1, which is in turn correlated with position in the dominance hierarchy. The decision to switch from patch 1 to patch 2 improves individual feeding rates in all cases, but is done slightly later than it should according to optimal foraging theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号