排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Kukkola EM Koutaniemi S Pöllänen E Gustafsson M Karhunen P Lundell TK Saranpää P Kilpeläinen I Teeri TH Fagerstedt KV 《Planta》2004,218(3):497-500
A specific condensed lignin substructure, dibenzodioxocin, was immunolocalized in differentiating cell walls of Norway spruce (Picea abies (L.) H. Karsten) and silver birch (Betula pendula Roth) xylem. A fluorescent probe, Alexa 488 was used as a marker on the dibenzodioxocin-specific secondary antibody. For the detection of this lignin substructure, 25-m cross-sections of xylem were viewed with a confocal laser-scanning microscope with fluorescein isothiocyanate fluorescence filters. In mature cells, fluorescence was detected in the S3 layer of the secondary wall in both tree species, but it was more intense in Norway spruce than in silver birch. In silver birch most of the signal was detected in vessel walls and less in fiber cell walls. In very young tracheids of Norway spruce and vessels and fibers of silver birch, where secondary cell wall layers were not yet formed, the presence of the dibenzodioxocin structure could not be shown.Abbreviation CLSM confocal laser-scanning fluorescence microscopy 相似文献
2.
3.
Kärkönen A Koutaniemi S Mustonen M Syrjänen K Brunow G Kilpeläinen I Teeri TH Simola LK 《Physiologia plantarum》2002,114(3):343-353
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium. 相似文献
4.
Antti Kilpeläinen Seppo Kellomäki Harri Strandman 《Global Change Biology Bioenergy》2012,4(6):811-817
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change. 相似文献
5.
The ionic liquids 1-ethyl-3-methylimidazolium acetate [emim]OAc, N,N,N,N-tetramethylguanidium propionate [TMGH]EtCO(2), and N,N,N,N-tetramethylguanidium acetate [TMGH]OAc, and the traditional cellulose solvent N-methylmorpholine N-oxide NMMO were characterized for their Kamlet-Taft (KT) values at several water contents and temperatures. For the ionic liquids and NMMO, thresholds of regeneration of cellulose solutions by water were determined using nephelometry and rheometry. Regeneration from wet IL was found to be asymmetric compared to dissolution into wet IL. KT parameters were found to remain almost constant at temperatures, between 20-100 °C, even at different water contents. Among the KT parameters, the β value was found to change most drastically, with an almost linear decrease upon addition of water. The ability of the mixtures to dissolve cellulose was best explained by the difference β-α (net basicity), rather than β alone. Regeneration of cellulose starts at thresholds values of approximately β < 0.8 (β-α < 0.35) and displayed four phases. 相似文献
6.
Antti Kilpeläinen Piritta Torssonen Harri Strandman Seppo Kellomäki Antti Asikainen Heli Peltola 《Global Change Biology Bioenergy》2016,8(2):307-316
In this work, we studied the potentials offered by managed boreal forests and forestry to mitigate the climate change using forest‐based materials and energy in substituting fossil‐based materials (concrete and plastic) and energy (coal and oil). For this purpose, we calculated the net climate impacts (radiative forcing) of forest biomass production and utilization in the managed Finnish boreal forests (60°–70°N) over a 90‐year period based on integrated use forest ecosystem model simulations (on carbon sequestration and biomass production of forests) and life‐cycle assessment (LCA) tool. When studying the effects of management on the radiative forcing in a system integrating the carbon sink/sources dynamics in both biosystem and technosystem, the current forest management (baseline management) was used a reference management. Our results showed that the use of forest‐based materials and energy in substituting fossil‐based materials and energy would provide an effective option for mitigating climate change. The negative climate impacts could be further decreased by maintaining forest stocking higher over the rotation compared to the baseline management and by harvesting stumps and coarse roots in addition to logging residues in the final felling. However, the climate impacts varied substantially over time depending on the prevailing forest structure and biomass assortment (timber, energy biomass) used in substitution. 相似文献
7.
Juha Grönroos Jyri Seppälä Sirkka Koskela Antti Kilpeläinen Pekka Leskinen Anne Holma Juha-Pekka Tuovinen Jukka Turunen Saara Lind Marja Maljanen Pertti J. Martikainen 《The International Journal of Life Cycle Assessment》2013,18(3):567-576
Purpose
There has been lively debate, especially in Finland and Sweden, on the climate impacts of peat fuel. Previous studies of peat fuel's life-cycle climate impacts were controversial in their interpretation. The aim of this paper is conclusive examination of the issues of LCA methodology, derived from critical review of previous studies and recalculation based on the latest knowledge of greenhouse gas balances related to peat fuel’s utilisation and the radiative forcing impacts of greenhouse gases.Methods
The most recent findings on emissions and the gas fluxes between soil, vegetation and atmosphere were used in calculation of the life-cycle climate impacts of the various peat fuel utilisation chains by means of LCA methodology. In the main, the calculation methods and rules were the same as in the previous studies, with the aim being to distinguish the impact of peat fuel’s utilisation from that of the natural or semi-natural situation. A dynamic method was employed for assessing changes in radiative forcing. The results of alternative peat fuel utilisation chains were compared to the corresponding result for coal.Results
There are many steps in peat fuel LCA, where different assumptions lead to different outcomes. Determining the functional unit, reference situations and system boundaries, as well as the emission calculation methods, is important from this point of view. Determination of the initial reference situation emerged as one of the critical points in the calculations. Time scale can strongly affect the final outcomes in a study where effects of long-term land-use change are considered.Conclusions
Each peatland area is unique. The higher the greenhouse gas emissions in the initial reference situation, the greater is the climate impact of the area and the more suitable the area is for peat extraction. The study showed that more greenhouse gas flux measurements are needed, for better assessment of the climate impacts of different potential peat extraction sites. Climate change mitigation requires quick actions, and uncertainties related to emissions are higher for longer time spans. Therefore, it can be concluded that a perspective spanning more than 100 years is inappropriate in peat fuel's life-cycle climate impact assessments. 相似文献8.
Aitio H Laakso T Pihlajamaa T Torkkeli M Kilpeläinen I Drakenberg T Serimaa R Annila A 《Protein science : a publication of the Protein Society》2001,10(1):74-82
Calerythrin, a four-EF-hand calcium-binding protein from Saccharopolyspora erythraea, exists in an equilibrium between ordered and less ordered states with slow exchange kinetics when deprived of Ca(2+) and at low temperatures, as observed by NMR. As the temperature is raised, signal dispersion in NMR spectra reduces, and intensity of near-UV CD bands decreases. Yet far-UV CD spectra indicate only a small decrease in the amount of secondary structure, and SAXS data show that no significant change occurs in the overall size and shape of the protein. Thus, at elevated temperatures, the equilibrium is shifted toward a state with characteristics of a molten globule. The fully structured state is reached by Ca(2+)-titration. Calcium first binds cooperatively to the C-terminal sites 3 and 4 and then to the N-terminal site 1, which is paired with an atypical, nonbinding site 2. EF-hand 2 still folds together with the C-terminal half of the protein, as deduced from the order of appearance of backbone amide cross peaks in the NMR spectra of partially Ca(2+)-saturated states. 相似文献
9.
Hieta R Kukkola L Permi P Pirilä P Kivirikko KI Kilpeläinen I Myllyharju J 《The Journal of biological chemistry》2003,278(37):34966-34974
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain. 相似文献
10.
Kilpeläinen TO Qi L Brage S Sharp SJ Sonestedt E Demerath E Ahmad T Mora S Kaakinen M Sandholt CH Holzapfel C Autenrieth CS Hyppönen E Cauchi S He M Kutalik Z Kumari M Stančáková A Meidtner K Balkau B Tan JT Mangino M Timpson NJ Song Y Zillikens MC Jablonski KA Garcia ME Johansson S Bragg-Gresham JL Wu Y van Vliet-Ostaptchouk JV Onland-Moret NC Zimmermann E Rivera NV Tanaka T Stringham HM Silbernagel G Kanoni S Feitosa MF Snitker S Ruiz JR Metter J Larrad MT Atalay M Hakanen M Amin N 《PLoS medicine》2011,8(11):e1001116