首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有41条查询结果,搜索用时 812 毫秒
1.
The objective of this study was to determine the trends in national rates of peripartum hysterectomy (PH) and uterine arterial embolization (UAE) in Korea. We used data collected by the Health Insurance Review & Assessment Service of Korea and analyzed data from patients who gave birth during the period from 2005 to 2008. There were 1785,178 deliveries during the study period, including 2636 cases of PH (1.48 per 1000 deliveries). The PH rate in 2005 was 1.57 per 1000 deliveries and in 2008 it was 1.33 per 1000 deliveries. UAE was performed in 161 women (incidence, 0.38 per 1000 deliveries) and 447 women (incidence, 0.98 per 1000 deliveries) in 2005 and 2008, respectively. In Korea, the rate of PH decreased slightly, while the rate of UAE rate increased dramatically during the period from 2005 to 2008. Further studies are needed to evaluate the effects of UAE on the rate of PH performed.  相似文献   
2.
Lee NG  Hong YK  Yu SY  Han SY  Geum D  Cho KS 《FEBS letters》2007,581(14):2625-2632
XNP/ATRX, a causative gene of X-linked alpha-thalassemia/mental retardation syndrome, encodes an SNF2 family ATPase/helicase protein. To better understand the role of XNP/ATRX in development, we isolated and characterized a Drosophila XNP/ATRX homolog, dXNP, which contains highly conserved SNF2 and helicase domains. Ectopically expressed dXNP induced strong apoptosis in the developing eye and wing, but did not affect cell cycle progression or the expression of wingless and engrailed, essential regulators of development. The dXNP-induced apoptosis was strongly suppressed by DJNKK/hemipterous mutation, and dXNP increased JNK activity. Taken together, these results suggest that dXNP regulates apoptosis via JNK activation.  相似文献   
3.
4.
HMGB1 (high mobility group box 1), a ubiquitously expressed DNA-binding nucleoprotein, has not only been attributed with important functions in the regulation of gene expression but is thought to function as an important damage-associated molecular pattern in the extracellular space. Recently, conditional Hmgb1 deletion strategies have been employed to overcome the perinatal mortality of global Hmgb1 deletion and to understand HMGB1 functions under disease conditions. From these studies, it has become evident that HMGB1 is not required for normal organ function. However, the different conditional ablation strategies have yielded contradictory results in some disease models. With nearly complete recombination in all transgenic mouse models, the main reason for opposite results is likely to lie within different targeting strategies. In summary, different targeting strategies need to be taken into account when interpreting HMGB1 functions, and further efforts need to be undertaken to compare these models side by side.We appreciate the thoughtful analysis on HMGB1-dependent and -independent autophagy by Sun and Tang.1 However, we disagree with several statements in this review. Sun and Tang write “Mice with hepatocyte-specific deletion of Hmgb1 from Robert Schwabe''s lab are not complete conditional knockout mice; the protein level of HMGB1 in the liver is decreased by about 70%,” as well as “a major difference between Robert Schwabe''s engineered HMGB1 mice and other groups is the tissue-level expression of HMGB1 after knockout.”1We would like to point out that livers are not solely composed of hepatocytes and that albumin-Cre mediated deletion of target genes in the liver cannot result in complete loss of hepatic mRNA or protein of target genes due to the presence of unrecombined nonparenchymal cells, unless the target gene is exclusively expressed in hepatocytes and/or cholangiocytes. The reduction of hepatic HMGB1 in our studies—reaching 90% and 72% at the mRNA and protein level, respectively—is precisely at the expected level for this conditional strategy, and similar to other studies that employed albumin-Cre for hepatocyte-specific knockout of other target genes.2-5 Hepatocytes account only for approximately 52% of cells in the liver, with other cell types including Kupffer cells (∼18% of liver cells), hepatic stellate cells (˜8% of liver cells), endothelial cells (∼22% cells of liver cells) and cholangiocytes (<1 % of liver cells) contributing to the remainder.6 Accordingly, albumin-Cre-mediated reduction of mRNA and protein levels of target genes (i.e., Hmgb1 and HMGB1 in our study) in the liver cannot exceed the amount of mRNA and protein expressed by hepatocytes and cholangiocytes (which is typically about 70–90%,2-5 due to higher mRNA and protein levels in hepatocytes than in other hepatic cell types). The high efficacy of our conditional approach is best demonstrated by almost complete loss of HMGB1 expression in the hepatocellular compartment of albumin-Cre mice—as evidenced by loss of HMGB1 expression in all HNF4α-positive cells and in isolated primary hepatocytes—whereas HMGB1 expression is retained in nonparenchymal cells, as demonstrated by costaining for Kupffer cell marker F4/80, endothelial cell marker endomucin, and hepatic stellate cell marker desmin.7,8 The nearly perfect recombination rate in our mice was further confirmed by experiments that employed Mx1Cre for Hmgb1 deletion, which resulted in almost complete loss of hepatic Hmgb1 mRNA and HMGB1 protein.7,8 Moreover, our transgenic mice show early postnatal mortality when bred with a germline Cre deleter,7 thus reproducing the phenotype of the global HMGB1 knockout.9In summary, our transgenic mouse model results in nearly perfect recombination efficiency with virtually complete loss of Hmgb1 mRNA and HMGB1 protein in all targeted cell types, and constitutes a valid tool for the assessment of HMGB1 functions in vivo. Findings from this model need to be taken into account for proper interpretation of the role of HMGB1 in the normal and diseased liver, and cannot be interpreted as a result of incomplete deletion efficiency. Hence, differences in targeting strategies (exons 2–4 by our approach, exons 2–3 in mice from Tang and colleagues) are likely to explain opposite findings, e.g. improvement of ischemia-reperfusion injury in our hands, but aggravation of liver damage in the study by Huang et al.8,10 Further analysis needs to be performed to determine whether ablation of exons 2–3 versus exons 2–4 leads to complete loss of HMGB1 function.  相似文献   
5.
6.
The immobilization of phospholipase D produced by Streptomyces sp. YU100 was evaluated to see it would be practical for industrial applications. To accomplish this, the purified enzyme, which contained 53 unit/mg of protein, was subjected to immobilization on various matrices. When immobilization supports including calcium alginate gel, polyacrylamide gel, and macroporous resin were evaluated, the highest enzyme retention ratio (> 42%) was observed on a Dowex MSA-2 macro-porous resin. This may have occurred as a result of the ability of the hydrophobic domain of phospholipase D to interact with the polystyrene backbone of the resin, as well as the ability of the dimethylethanolamine group of the MSA-2 resin to retain the enzyme by forming hydrogen bonds with the acidic residues of the enzyme. Upon the operation of a reactor packed with enzyme that had been immobilized on a Dowex MSA-2 resin, greater than 80% of the initial enzyme activity was retained for 16 days. During the reaction, phosphatidylcholine became bound to the immobilized resin and interfered with the enzyme reaction, therefore, the resin was washed with ethyl ether every 2 h. A process for recovering excessive l-serine from phospholipids using the Dowex MR-3 resin was designed, and the separated l -serine was employed again after replacing the amount that was used.  相似文献   
7.
8.
9.
A series of glutamic acid derivatives was synthesized and evaluated for their antioxidant activity and stability. We found several potent and stable glutamic acid derivatives. Among them, compound 12b exhibited good in vitro activity, chemical stability and cytotoxicity. A prototype compound 12b showed an anti-inflammatory effect in LPS-stimulated RAW 264.7 cell lines and in a zebrafish model.  相似文献   
10.
The GLUT4-containing vesicles purified from rat adipocyte contain many protein species of unknown identity, some of which are likely to play a critical role in the trafficking of GLUT4. Presently, we describe an 85-kDa protein in GLUT4-vesicles of rat adipocytes as a potential GLUT4 traffic regulatory protein. MALDI-TOF MS, RT-PCR, gene cloning, protein sequence analysis, and immunoreactivity assay have identified this protein as N-acetylated alpha-linked acidic dipeptidase (NAALADase) expressed in rat adipocytes. NAALADase in rat adipocytes was mostly membrane-associated and colocalized in discrete GLUT4-compartments with enrichment in putative GLUT4-sorting endosomes (G4G(L)). Total cell lysates of adipocytes exhibited NAALADase activity. Next, we treated rat adipocytes with 2-[phosphonomethy]pentanedionic acid (2-PMPA), a potent NAALADase inhibitor, and studied its effect on the distribution of GLUT4 and 3-O-methyl glucose (3OMG) flux. In 2-PMPA-treated adipocytes, there was a significant reduction (by 40%) in the insulin-stimulated GLUT4 translocation to the plasma membrane. The 3OMG flux in insulin-stimulated adipocytes was also delayed (51% of control) by 2-PMPA treatment, indicating that 2-PMPA impairs insulin-stimulated GLUT4 recruitment and the uptake of glucose. It is suggested that NAALADase may function as a regulator required for the insulin-stimulated GLUT4 vesicle movement and/or its exocytosis, thus may regulate insulin-induced GLUT4 recruitment in rat adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号