首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  35篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
1.
2.
It has been acknowledged that aging exerts detrimental effects on cells of the innate immune system and that neuropeptides, including neuropeptide Y (NPY) and NPY-related peptides fine-tune the activity of these cells through a receptor specific mechanism. The present study investigated the age-dependent potential of peptide YY (PYY) to modulate different granulocyte functions. The PYY reduced the carrageenan-elicited granulocyte accumulation into the air-pouch of aged (24 months) rats, and markedly decreased the phagocytosis of zymosan, as well as the H2O2 production, when applied in vivo (20 μg/air-pouch). The anti-inflammatory effect of PYY was less prominent in adult (8 months) and young (3 months) rats. However, the proportions of granulocytes expressing Y1, Y2 and Y5 receptor subtypes were significantly lower in both aged and young rats when compared to adult rats. Furthermore, the aging was found to be associated with the diminished dipeptidyl peptidase 4 (DP4, an enzyme converting the NPY and PYY to Y2/Y5 receptor selective agonists) activity in plasma. In conclusion, the diverse age-related anti-inflammatory effect of PYY in rats originates from different expression levels of Y1, Y2, and Y5 receptor subtypes in addition to different plasma DP4 activity.  相似文献   
3.
It is well documented that neuropeptide Y (NPY) exerts a wide range of biological functions through at least five NPY Y receptor subtypes (Y1-Y5), but its immunological effects only recently came into focus. Using NPY family peptides and NPY-related receptor-specific peptides as well as Y1 and Y2 receptor antagonists, we have tested which NPY Y receptors are involved in NPY-induced modulation of rat peritoneal macrophage function in vitro. NPY and PYY increased oxidative burst in phorbol myristate acetate (PMA)-stimulated macrophages involving activation of protein kinase C (PKC), and decreased it in zymosan-stimulated cells resembling inhibition of signaling pathways subsequent to binding of zymosan particles for the iC3b fragment receptor on macrophages. The combined treatment with NPY and NPY Y receptor antagonists revealed that NPY-induced potentiation of oxidative burst in PMA-stimulated cells is mediated through Y1 and Y2 receptors, while NPY-induced suppression in zymosan-stimulated cells is mediated through Y2 receptors only. NPY-related peptides differently modulated macrophage function, confirming involvement of NPY Y2 receptor in both potentiation and suppression of oxidative burst in these cells. Additionally, it was shown that NPY Y5 receptor mediated suppression of oxidative burst in PMA- and zymosan-stimulated macrophages. Taken together, the present data reveal an NPY Y1 and Y2/Y5 receptor interaction in NPY-induced modulation of macrophage functions related to inflammation.  相似文献   
4.
In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-γ+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCRαβ? microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCRαβ– cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage.  相似文献   
5.
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocitochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.  相似文献   
6.
7.
A new pseudoscorpion species, Roncus travuniensis sp. n. (Neobisiidae, Pseudoscorpiones), was collected in the Arenstorfova Pećina Cave, near Trebinje, Bosnia and Herzegovina. The main morphological traits of the specimen studied clearly demonstrate its affinities with Roncus vulcanius Beier, 1938. Additionally, some taxonomic and biogeographical traits of this new pseudoscorpion are also discussed.  相似文献   
8.
For many years, the central nervous system and the immune system were considered two autonomous entities. However, extensive research in the field of neuroimmunomodulation during the past decades has demonstrated the presence of different neuropeptides and their respective receptors in the immune cells. More importantly, it has provided evidence for the direct effects of neuropeptides on the immune cell functions. Neuropeptide Y (NPY) is generally considered the most abundant peptide in the central and peripheral nervous system. However, it is also distinguished by exhibiting pleiotropic functions in many other physiological systems, including the immune system. NPY affects the functions of the cells of the adaptive and innate immunity. In this respect, NPY is known to modulate immune cell trafficking, T helper cell differentiation, cytokine secretion, natural killer cell activity, phagocytosis and the production of reactive oxygen species. The specific Y receptors have been found in immune cells, and their expression is amplified upon immune stimulation. Different Y receptor subtypes may mediate an opposite effect of NPY on the particular function, thus underlining its regulatory role. Since the immune cells are capable of producing NPY upon appropriate stimulation, this peptide can regulate immune cell functions in an autocrine/paracrine manner. NPY also has important implications in several immune-mediated disorders, which affirms the clear need for further investigation of its role in either the mechanisms of the disease development or its possible therapeutic capacity. This review summarises the key points of NPY’s mission throughout the immune system.  相似文献   
9.
We have developed a simple one-step 30-min method for fluorescent visualization of proteins in native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) gels. The method is based on formation of strong fluorophores via potassium ferricyanide-provoked oxidation of tryptophan (Trp). Following PAGE, gels are soaked in water solution of potassium ferricyanide (100 mM) and NaOH (1 M) and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method was slightly lower compared with standard Coomassie Brilliant Blue (CBB) staining. The method can be useful when rapid acquisition of data is of the essence. After preview, gels can be post-stained using the CBB protocol for further analysis. The intensity of fluorescence is dependent on Trp number, so the protocol might find application in the quantification of Trp residues as illustrated here. Importantly, there is room for improvement of the method. Namely, according to excitation–emission matrix analysis of stained protein bands, maximal fluorescence intensity (at 345/460 nm) was 3.5-fold higher compared with the settings that were available on a commercial imager (395/525 nm). As a supplement, we present an upgrade of the previously described method for in-gel detection of non-heme iron-binding proteins that also employs potassium ferricyanide.  相似文献   
10.
Novel glucoside of physiological active vanillyl alcohol was synthesized for the first time using maltase from Saccharomyces cerevisiae as catalyst, and established its structure as 4-hydroxy-3-methoxybenzyl-α-D: -glucopyranoside. The key reaction factors for this transglucosylation reaction were optimized using response surface methodology and the highest yield so far in maltase catalyzed transglucosylation reaction was obtained. It was found out that optimum temperature of reaction was 37 °C, optimal maltose concentration was 60% (w/v), optimal pH was 6.6, and optimal concentration of vanillyl alcohol was 158 mM. Under these conditions, yield of glucoside was 90 mM with no by product formation. It was shown that this compound posses good antioxidant activity as well as stability in gastrointestinal tract. It was demonstrated that it is hydrolyzed on brush border membrane of enterocytes, so it can serve in protecting gastrointestinal system from oxidation, as well as source of anticonvulsive drug after the hydrolysis of glucoside on brush border membrane of small intestine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号