首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   4篇
  2018年   1篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
A method is described for isolating the beta subunit from spinach chloroplast F1 (CF1). The isolated beta subunit reconstituted an active F1 hybrid with the F1 of Rhodospirillum rubrum chromatophores from which the beta subunit had been removed. The CF1 beta subunit was similar to the isolated beta subunit of Escherichia coli F1 (Gromet-Elhanan, Z., Khananshivili, D., Weiss, S., Kanazawa, H., and Futai, M. (1985) J. Biol. Chem. 260, 12635-12640) in that it restored a substantial rate of ATP hydrolysis and low, but significant light-dependent ATP synthesis to the beta-less chromatophores. The low rate of photophosphorylation observed with the hybrid enzyme probably resulted from a looser coupling of the CF1 beta subunit to proton translocation in the R. rubrum Fo-F1 complex. The hybrid enzyme exhibited a high specificity for Mg2+-ATP as substrate for ATP hydrolysis and both ATP synthesis and hydrolysis were strongly inhibited by the antibiotic tentoxin. In contrast, chromatophores reconstituted with the native R. rubrum beta subunit actively hydrolyzed both Mg2+-ATP and Ca2+-ATP and were insensitive to tentoxin. These results indicate a close functional homology between the beta subunits of the prokaryotic and eukaryotic H+-ATPases and suggest a role for the beta subunit in conferring the different metal ion specificities and inhibitor sensitivities upon the enzymes. They also demonstrate the feasibility of isolating the beta subunit from CF1 in a reconstitutively active form.  相似文献   
2.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   
3.
The coupling factor ATPase complex extracted by Triton X-100 from the photosynthetic bacterium Rhodospirillum rubrum could be incorporated into phospholipid vesicles after removal of the Triton. Vesicles reconstituted with this F0 · F1-type ATPase together with bacteriorhodopsin were found to catalyze, in the light, net ATP synthesis which was inhibited by the energy transfer inhibitors oligomycin and N,N-dicyclohexylcarbodiimide as well as by uncouplers. In vesicles reconstituted with the crude ATPase up to 50% of the observed rate of phosphorylation was independent on light and bacteriorhodopsin and insensitive to the above-listed inhibitors. This dark activity was, however, completely blocked by the adenylate kinase inhibitor, p1,p5-di(adenosine-5′)pentaphosphate, which did not affect at all the net light-dependent phosphorylation nor the ATP-32Pi exchange reaction. Vesicles reconstituted with the purified ATPase catalyzed only the light- and bacteriorhodopsin-dependent diadenosine pentaphosphate-insensitive phosphorylation. The rate of this photophosphorylation was found to be proportional to the amount of ATPase and bacteriorhodopsin, and linear for at least 20 min of illumination. These results indicate that the purified ATPase contains the complete assembly of subunits required to transduce electrochemical gradient energy into chemical energy.  相似文献   
4.
Genomic technology has completely changed the way in which we are able to diagnose human genetic mutations. Genomic techniques such as the polymerase chain reaction, linkage analysis, Sanger sequencing, and most recently, massively parallel sequencing, have allowed researchers and clinicians to identify mutations for patients with Pendred syndrome and DFNB4 non-syndromic hearing loss. While thus far most of the mutations have been in the SLC26A4 gene coding for the pendrin protein, other genetic mutations may contribute to these phenotypes as well. Furthermore, mouse models for deafness have been invaluable to help determine the mechanisms for SLC26A4-associated deafness. Further work in these areas of research will help define genotype-phenotype correlations and develop methods for therapy in the future.  相似文献   
5.
Zippora Gromet-Elhanan 《BBA》1967,131(3):526-537
Optimal cyclic photophosphorylation with reduced indophenols under anaerobic conditions was shown to require a critical redox balance. Over-reduction inhibited this phosphorylation; addition of oxidizing agents like ferricyanide, air, ferredoxin or ferredoxin plus triphosphopyridine nucleotide relieved the inhibition.

When ascorbate and indophenol served as the electron donor couple for TPN+ reduction, only the amount of TPNH formed was dependent on the concentration of TPN+. The phosphorylation observed in this system was dependent only on the concentration of indophenol, and on the ability of reduced indophenol to mediate cyclic photophosphorylation. The cyclic electron flow with reduced indophenol was shown to operate simultaneously with the non-cyclic electron flow to TPN+. It was concluded that there was no phosphorylation site in the non-cyclic electron flow between ascorbate-indophenol and TPN+ and that the phosphorylation observed in this case was due only to cyclic photophosphorylation with the reduced indophenols.

In the light of these results, a working hypothesis with two different sites for cyclic and non-cyclic photophosphorylation is suggested.  相似文献   

6.
7.
The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.  相似文献   
8.
Identifying genes causing non-syndromic hearing loss has been challenging using traditional approaches. We describe the impact that high-throughput sequencing approaches are having in discovery of genes related to hearing loss and the implications for clinical diagnosis.  相似文献   
9.
In the past decade, the 2001 anthrax incident in the U.S. and the 2003 SARS epidemic have highlighted the biological threat to civilian populations. The risk posed by the natural or manmade spread of biological agents among the population dictates a need for better national preparedness. One key component of this preparation is the establishment of a Strategic National Stockpile (SNS) of pharmaceuticals that would provide appropriate medical countermeasures in case of an outbreak. However, to reduce the expense of such a stockpile and to make it worthwhile, there is also a need for a shelf-life extension program (SLEP) through which pharmaceuticals could be extended beyond manufacturer-ascribed shelf life, as long as they meet regulation standards. In this article, we review the Israeli experience with the national ciprofloxacin stockpile procurement and shelf-life extension program.  相似文献   
10.
A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号