首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   38篇
  国内免费   39篇
  584篇
  2024年   1篇
  2023年   12篇
  2022年   16篇
  2021年   30篇
  2020年   24篇
  2019年   14篇
  2018年   34篇
  2017年   15篇
  2016年   19篇
  2015年   40篇
  2014年   32篇
  2013年   56篇
  2012年   59篇
  2011年   48篇
  2010年   22篇
  2009年   22篇
  2008年   19篇
  2007年   28篇
  2006年   23篇
  2005年   21篇
  2004年   9篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有584条查询结果,搜索用时 0 毫秒
1.
Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.  相似文献   
2.

Objectives

Despite improvements in diagnosis and treatment, preeclampsia (PE) continues to pose a significant risk of maternal and foetal morbidity and mortality if not addressed promptly. An increasing number of studies have suggested that tissue factor pathway inhibitor 2 (TFPI2) acts as a suppressor gene, possibly inhibiting multiple serine proteases affecting cell proliferation and migration. It plays an essential role in the occurrence and development of PE, but the pathogenesis remains unclear.

Materials and methods

In our research, we performed western blotting, immunohistochemistry and qPCR assays to investigate TFPI2 and miR‐616‐3p expression in preeclamptic placental tissues. Cell assays were performed in HTR‐8/SVneo and JEG3 cell lines. Cell proliferation and migration events were investigated by MTT, EdU and transwell assays. In conjunction with bioinformatics analysis, luciferase reporter assays were performed to elucidate the mechanism by which miR‐616‐3p binds to TFPI2 mRNA.

Results

We established that TFPI2 protein levels were significantly upregulated in PE placental tissues. In addition, we found that miR‐616‐3p binds specifically to the 3′‐UTR region of TFPI2 mRNA. Furthermore, miR‐616‐3p knockdown or TFPI2 overexpression substantially impaired cell growth and migration, whereas miR‐616‐3p upregulation or TFPI2 knockdown stimulated cell proliferation and migration. This miR‐616‐3p / TFPI2 axis was also found to affect the epithelial‐mesenchymal transition process in PE.

Conclusions

Our results demonstrated that TFPI2 plays a vital role in the progression of PE and might provide a prospective therapeutic strategy to mitigate the severity of the disorder.
  相似文献   
3.
大连长山群岛海岸带沉积物微生物群落结构特征   总被引:2,自引:0,他引:2  
【目的】为揭示海岸带微生物群落结构在人类活动影响下的分布差异及对环境因子变化的响应趋势,【方法】本实验采用t-RFLP和DGGE技术,对大连长山群岛不同功能类型海岸潮间带沉积物中的微生物群落结构特征进行比对和分析,并通过16S rRNA基因文库解析养殖污染站位的微生物群落结构特征。【结果】T-RFLP的t-RF分析显示,养殖污染严重站位的微生物丰度、香农指数和均匀度明显高于其它站位。通过对t-RFLP色谱峰和DGGE图谱聚类分析发现,处于旅游区的2个站位微生物群落结构相似度较高,养殖区随污染程度加重与旅游区的群落结构差异增大。对污染严重站位建立的克隆文库显示变形菌门(Proteobacteria)为优势菌群,其中γ-变形菌门是主要存在的亚门微生物。【结论】T-RFLP和DGGE技术从不同方面反映了环境中的微生物群落结构特征,研究结果表明养殖污染区的微生物群落结构发生明显变化,其影响大于地理隔离效应,污染严重区域的微生物群落中存在大量肠杆菌属,且多个物种与富营养化和赤潮相关联,如拟杆菌门和α-变形细菌红细菌目的细菌。  相似文献   
4.
5.
6.
Wu  Yanping  Xu  Han  Cao  Xuefang  Liu  Rongrong  Tang  Li  Zeng  Zhonghua  Li  Weifen 《Probiotics and antimicrobial proteins》2020,12(2):649-656

Probiotics have always been considered as a supplementary therapy for many diseases especially gut disorders. The absorption and barrier function of the gut play a vital role in the maintenance of body homeostasis. This study was to investigate the protective effects of Bacillus amyloliquefaciens SC06 (Ba) on H2O2-induced oxidative stress on intestinal porcine epithelial cells (IPEC-1) based on the level of gene expression. We demonstrated that Ba was a safe probiotic strain in the first place. Results showed that treatment with H2O2 significantly increased the mRNA expression of absorptive transporters glucose transporter 2 (GLUT2), Ala/Ser/Cys/Thr transporter 1 (ASCT1), and ASCT2 compared with the control group. Meanwhile, oxidative stress induced a significant improvement in the mRNA expression of occludin (OCLN) and caspase-3, and remarkably inhibited the expression of L-type amino acid transporter 1 (LAT1) or B cell lymphoma-2 (Bcl-2), respectively. Pretreatment with Ba dramatically reversed the disturbance induced by oxidative stress on the mRNA expression of ASCT1, ASCT2, and OCLN, which also significantly prevented H2O2-inhibited LAT1 and Bcl-2 mRNA expression. However, Ba failed to exert any significant protective effect on GLUT2 and caspase-3 mRNA expression. We concluded that pretreatment with Ba could alleviate the damage caused by oxidative stress to a certain extent and conferred a protective effect to the intestine.

  相似文献   
7.
This study investigates the hemodynamic changes to various types of coronary stenosis in the left coronary artery bifurcation, based on a patient-specific analysis. Twenty two patients with left coronary artery disease were included in this study. All stenoses involving the left coronary artery bifurcation were classified into four types, according to their locations: A) left circumflex (LCx) and left anterior descending (LAD), B) LCx only, C) left main stem only, and D) LAD only. Computational fluid dynamics (CFD) was performed to analyze the flow and wall shear stress (WSS) changes in all reconstructed left coronary geometries. Our results showed that the flow velocity and WSS were significantly increased at stenotic locations. High WSS was found at >70% lumen stenosis, which ranged from 2.5 Pa to 3.5 Pa. This study demonstrates that in patients with more than 50% stenosis in the left coronary artery bifurcation, WSS plays an important role in providing information about the extent of coronary atherosclerosis in the left coronary artery branch.  相似文献   
8.
9.
Bioavailability of dichlorodiphenyltrichloroethanes (DDTs) in surface sediments was evaluated with semipermeable membrane devices (SPMDs) and two different sediment-dwelling benthic mussels, Bellamya aeruginosa (B. aeruginosa) and Corbicula fluminea (C. fluminea). After 28d laboratory exposure, the positive correlations of DDT concentrations between both SPMDs and benthic mussels with sediments documented that the bioavailability of DDTs was mainly affected by surrounding sediments, while the observed differences of DDT concentrations and congener proportions between B. aeruginosa and C. fluminea were due to the specific physiological characteristics of organisms and different physico-chemical properties of contaminants. Comparisons between SPMDs and benthic mussels showed higher values of biota-sediment accumulation factors (BSAF, 0.63-3.61 for B. aeruginosa and 2.19-17.08 for C. fluminea) than device accumulation factors (DAF, 1.00-1.74). This indicated that living organisms bioaccumulated much more DDTs from sediments than SPMDs due to the different exposure and uptake routes. Strong positive associations between DDTs in SPMDs and benthic mussels indicated SPMDs could mimic the bioaccumulation of DDTs, especially in C. fluminea. However, given the distinct differences observed for both concentrations and congener proportions of DDTs in SPMDs and B. aeruginosa, future study should be directed to develop reliable models with various sediment-dwelling organisms before SPMDs are routinely used in field study.  相似文献   
10.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号