首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   11篇
  2010年   1篇
  2009年   5篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
1.
R E Waugh  J Song  S Svetina    B Zeks 《Biophysical journal》1992,61(4):974-982
Bilayer membranes exhibit an elastic resistance to changes in curvature. This resistance depends both on the intrinsic stiffness of the constituent monolayers and on the curvature-induced expansion or compression of the monolayers relative to each other. The monolayers are constrained by hydrophobic forces to remain in contact, but they are capable of independent lateral redistribution to minimize the relative expansion or compression of each leaflet. Therefore, the magnitude of the expansion and compression of the monolayers relative to each other depends on the integral of the curvature over the entire membrane capsule. The coefficient characterizing the membrane stiffness resulting from relative expansion is the nonlocal bending modulus kr. Both the intrinsic (local) bending modulus (kc) and the nonlocal bending modulus (kr) can be measured by the formation of thin cylindrical membrane strands (tethers) from giant phospholipid vesicles. Previously, we reported measurements of kc based on measurements of tether radius as a function of force (Song and Waugh, 1991, J. Biomech. Engr. 112:233). Further analysis has revealed that the contribution from the nonlocal bending stiffness can be detected by measuring the change in the aspiration pressure required to establish equilibrium with increasing tether length. Using this approach, we obtain a mean value for the nonlocal bending modulus kr of approximately 4.1 x 10(-19)J. The range of values is broad (1.1-10.1 x 10(-19)J) and could reflect contributions other than simple mechanical equilibrium. Inclusion of the nonlocal bending stiffness in the calculation of kc results in a value for that modulus of approximately 1.20 +/- 0.17 x 10(-19)J, in close agreement with values obtained by other methods.  相似文献   
2.
A theoretical analysis is presented of the formation of membrane tethers from micropipette-aspirated phospholipid vesicles. In particular, it is taken into account that the phospholipid membrane is composed of two layers which are in contact but unconnected. The elastic energy of the bilayer is taken to be the sum of contributions from area expansivity, relative expansivity of the two monolayers, and bending. The vesicle is aspirated into a pipette and a constant point force is applied at the opposite side in the direction away from the pipette. The shape of the vesicle in approximated as a cylindrical projection into the pipette with a hemispherical cap, a spherical section, and a cylindrical tether with a hemispherical cap. The dimensions of the different regions of the vesicle are obtained by minimizing its elastic energy subject to the condition that the volume of the vesicle is fixed. The range of values for the parameters of the system is determined at which the existence of a tether is possible. Stability analysis is performed showing which of these configurations are stable. The importance of the relative expansion and compression of the constituent monolayers is established by recognizing that local bending energy by itself does not stabilize the vesicle geometry, and that in the limit as the relative expansivity modulus becomes infinitely large, a tether cannot be formed. Predictions are made for the functional relationships among experimentally observable quantities. In a companion report, the results of this analysis are applied to experimental measurements of tether formation, and used to calculate values for the membrane material coefficients.  相似文献   
3.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   
4.
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.  相似文献   
5.
Japelj B  Waltho JP  Jerala R 《Proteins》2004,54(3):500-512
Three-dimensional domain swapping has been observed in increasing number of proteins and has been implicated in the initial stages of protein aggregation, including that of the cystatins. Stefin A folds as a monomer under native conditions, while under some denaturing conditions domain-swapped dimer is formed. We have determined the backbone dynamics of the monomeric and domain-swapped dimeric forms of stefin A by (15)N relaxation using a model-free approach. The overall correlation times of the molecules were determined to be 4.6 +/- 0.1 ns and 9.2 +/- 0.2 ns for the monomer and the dimer, respectively. In the monomer, decreased order parameters indicate an increased mobility for the N-terminal trunk, the first and the second binding loops. At the opposite side of the molecule, the loop connecting the alpha-helix with strand B, the beginning of strand B and the loop connecting strands C and D show increased localized mobility. In the domain-swapped dimer, a distinctive feature of the structure is the concatenation of strands B and C into a single long beta-strand. The newly formed linker region between strands B and C, which substitutes for the first binding loop in the monomer, has order parameters typical for the remainder of the beta-strands. Thus, the interaction between subunits that occurs on domain-swapping has consequences for the dynamics of the protein at long-range from the site of conformational change, where an increased rigidity in the newly formed linker region is accompanied by an increased mobility of loops remote from that site.  相似文献   
6.
Membrane skeletons can be characterized as cytoskeletal structures lying parallel to the bilayer part of cellular and organelle membranes. Typical examples are spectrin network and actin-myosin cortex. We approach the problem of elucidating the function of membrane skeletons by theoretically analyzing mechanical models of the cellular behavior. Membranes of different physical and chemical properties are considered. In erythrocytes and some organelles membrane bilayers are smooth and simply underlaid or overlaid by membrane skeletons. It is argued that there the role of a membrane skeleton is, either, to keep the membrane composition laterally homogeneous as it is in the case of the erythrocyte, or, that it is involved in the processes of the lateral separation of integral membrane proteins as it is happening in the case of some intermediate steps of the vesicular membrane trafficking. In the second type of membranes the bilayer part is ruffled and folded, and there the membrane skeletons play a role in the determination of the cortical tension. Here we explore in more detail the mechanical behavior of a cell with such properties of its boundary. The shape transformations are described which occur under the influence (i) of different external forces, i.e., when an originally spherical cell is aspirated into the micropipette or when such a cell is adsorbed on a flat surface, and (ii) of different internal forces on the cell boundary exerted by the cytoskeletal elements.  相似文献   
7.
The gene-for-gene mechanism of plant disease resistance involves direct or indirect recognition of pathogen avirulence (Avr) proteins by plant resistance (R) proteins. Flax rust (Melampsora lini) AvrL567 avirulence proteins and the corresponding flax (Linum usitatissimum) L5, L6, and L7 resistance proteins interact directly. We determined the three-dimensional structures of two members of the AvrL567 family, AvrL567-A and AvrL567-D, at 1.4- and 2.3-A resolution, respectively. The structures of both proteins are very similar and reveal a beta-sandwich fold with no close known structural homologs. The polymorphic residues in the AvrL567 family map to the surface of the protein, and polymorphisms in residues associated with recognition differences for the R proteins lead to significant changes in surface chemical properties. Analysis of single amino acid substitutions in AvrL567 proteins confirm the role of individual residues in conferring differences in recognition and suggest that the specificity results from the cumulative effects of multiple amino acid contacts. The structures also provide insights into possible pathogen-associated functions of AvrL567 proteins, with nucleic acid binding activity demonstrated in vitro. Our studies provide some of the first structural information on avirulence proteins that bind directly to the corresponding resistance proteins, allowing an examination of the molecular basis of the interaction with the resistance proteins as a step toward designing new resistance specificities.  相似文献   
8.
Resistance (R) proteins are key regulators of the plant innate immune system and are capable of pathogen detection and activation of the hypersensitive cell death immune response. To understand the molecular mechanism of R protein activation, we undertook a phenotypic and biochemical study of the flax nucleotide binding (NB)-ARC leucine-rich repeat protein, M. Using Agrobacterium-mediated transient expression in flax cotyledons, site-directed mutations of key residues within the P-loop, kinase 2, and MHD motifs within the NB-ARC domain of M were shown to affect R protein function. When purified using a yeast expression system and assayed for ATP and ADP, these mutated proteins exhibited marked differences in the quantity and identity of the bound nucleotide. ADP was bound to recombinant wild-type M protein, while the nonfunctional P-loop mutant did not have any nucleotides bound. In contrast, ATP was bound to an autoactive M protein mutated in the highly conserved MHD motif. These data provide direct evidence supporting a model of R protein function in which the "off" R protein binds ADP and activation of R protein defense signaling involves the exchange of ADP for ATP.  相似文献   
9.
Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 A resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.  相似文献   
10.
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号