首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  2022年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
Membrane fusion is a central event in the process of exocytosis. It occurs between secretory vesicle membranes and the plasma membrane and also among secretory vesicle membranes themselves during compound exocytosis. In many cells the fusion event is regulated by calcium. Since the relevant membranes do not undergo fusion in vitro when highly purified, much attention has been paid to possible protein mediators of these calcium-dependent fusion events. The annexins comprise a group of calcium-dependent membrane-aggregating proteins, of which synexin is the prototype, which can initiate contacts between secretory vesicle membranes which will then fuse if the membranes are further perturbed by the addition of exogenous free fatty acids. This review discusses the secretory pathway and the evidence obtained fromin vitro studies that suggests the annexins may be mediators or regulators of membrane fusion in exocytosis.  相似文献   
2.
3.
The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.  相似文献   
4.
International Microbiology - In this study, we aimed to develop a novel, sustained release varnish (SRV) for voice prostheses (VP) releasing chlorhexidine (CHX), for the prevention of biofilm...  相似文献   
5.
The effect of chlorhexidine (CHX), a potent antibacterial agent, was tested on the molecular weight distribution (MWD) of fructans synthesized by cell-free fructosyltransferase (FTF) in solution in comparison to FTF immobilized onto hydroxyapatite (HA). Size-exclusion chromatography (SEC) analysis has shown that cell-free FTF, both in solution and immobilized on HA, produces both low MW (1.9-2.2 kDa) and high MW (913-1047 kDa) fructans. CHX at a concentration of 0.02% altered the MWD of the fructans by reducing the polydispersity ratio and changing the MWD of the fructans synthesized both by immobilized FTF and by FTF in solution. These changes of the fructans in the presence of CHX adds a new prospective to the anticaries effect of CHX in addition to its antibacterial properties.  相似文献   
6.
In murine macrophages, the anti-tumor agent, paclitaxel, induces expression of a wide variety of inflammatory and anti-inflammatory genes, and causes cytokine secretion via signaling pathways that overlap with those engaged by lipopolysaccharide (LPS), the endotoxic component of Gram-negative bacteria. Using semi-quantitative RT-PCR for detection of gene expression, coupled with ELISA for the detection of secreted gene products, we analyzed the responsiveness of an extensive panel of cytokine and non-cytokine genes to induction by paclitaxel and LPS in the murine DA-3 breast cancer line. A subset of the genes examined (e.g., G-CSF, MIP-2, iNOS, and IL-1 beta, and GM-CSF) was upregulated >3-20-fold by both LPS and paclitaxel in the DA-3 cell line, while IP-10 mRNA was induced by paclitaxel, but not by LPS. In the human MDA-MB-231 breast cancer cell line, LPS also increased mRNA levels for both GM-CSF and IP-10 significantly, while, paclitaxel increased IP-10 mRNA levels with delayed kinetics and failed to induce GM-CSF mRNA. Co-cultures of murine breast cancer cells and macrophages, stimulated with IFN-gamma plus either paclitaxel or LPS, resulted in augmented release of nitric oxide. As both GM-CSF and IP-10 have been implicated in tumor rejection in vivo through either indirect actions on the host immune system or by inhibiting tumor angiogenesis, our data strengthen the hypothesis that tumor cell-derived inflammatory mediators may, in part, underlie the anti-tumor efficacy of paclitaxel in breast cancer.  相似文献   
7.
Recombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break. Once a chromosome is broken, yeast cells become immediately committed to recombinational repair. Recombination is completed within an hour and exhibits two kinetic gaps. By using this kinetic framework we also characterized the role played by several proteins in the recombinational process. In the absence of Rad52, the broken chromosome ends, both 5' and 3', are rapidly degraded. This is not due to the inability to recombine, since the 3' single-stranded DNA ends are stable in a strain lacking donor sequences. Rad57 is required for two consecutive strand exchange reactions. Surprisingly, we found that the Srs2 helicase also plays an early positive role in the recombination process.  相似文献   
8.
Replication‐factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin‐like modifier (SUMO)‐interacting motifs and a PCNA‐interacting protein box close to the N‐terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.  相似文献   
9.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号