首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  20篇
  2017年   1篇
  2015年   1篇
  2013年   9篇
  2009年   3篇
  2008年   3篇
  2003年   1篇
  1996年   1篇
  1988年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
Controlling accumulations of unwanted biofilms requires an understanding of the mechanisms that organisms use to interact with submerged substrata. While the substratum properties influencing biofilm formation are well studied, those that may lead to cellular or biofilm detachment are not. Surface-grafted stimuli-responsive polymers, such as poly (N-isopropylacrylamide) (PNIPAAm) release attached cells upon induction of environmentally-triggered phase changes. Altering the physicochemical characteristics of such polymeric systems for systematically studying release, however, can alter the phase transition. The physico-chemical changes of thin films of PNIPAAm grafted from initiator-modified self-assembled monolayers (SAMs) of ω-substituted alkanethiolates on gold can be altered by changing the composition of the underlying SAM, without affecting the overlying polymer. This work demonstrates that the ability to tune such changes in substratum physico-chemistry allows systematic study of attachment and release of bacteria over a large range of water contact angles. Such surfaces show great promise for studying a variety of interactions at the biointerface. Understanding of the source of this tunability will require further studies into the heterogeneity of such films and further investigation of interactions beyond those of water wettability.  相似文献   
2.
Adult Rhipicephalus appendiculatus Muguga, having high or low intensities of Theileria parva Muguga infection in their salivary glands, were exposed to 20 °C and 85% relative humidity in the laboratory or quasi-natural conditions. Survival of the ticks and T. parva infections in their salivary glands was then monitored over a two year period. Ticks, having an average infection level of 2 infected acini per female, survived for up to 70 or 106 weeks after moulting under the laboratory or quasi-natural conditions respectively. Those having an infection level of 26 infected acini per female, survived for a similar duration except that those under quasi-natural conditions survived for a slightly shorter duration (102 weeks). Similarly, T. parva parasites survived for much longer periods under quasi-natural conditions than under the laboratory conditions. They survived for up to 38 or 78 weeks post salivary gland infection under the laboratory or quasi-natural conditions respectively in both categories of infection levels. There was apparently a density dependent relationship in T. parva survival, with a dramatic fall in infection occurring in ticks with high levels of infection between weeks 10 and 18 or weeks 38 and 46 post salivary gland infection in those exposed to laboratory or quasi-natural conditions before levelling off. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
We have studied the temporal variation in viral abundances and community assemblage in the eutrophic Lake Loosdrecht through epifluorescence microscopy and pulsed field gel electrophoresis (PFGE). The virioplankton community was a dynamic component of the aquatic community, with abundances ranging between 5.5 x 10(7) and 1.3 x 10(8) virus-like particles ml(-1) and viral genome sizes ranging between 30 and 200 kb. Both viral abundances and community composition followed a distinct seasonal cycle, with high viral abundances observed during spring and summer. Due to the selective and parasitic nature of viral infection, it was expected that viral and host community dynamics would covary both in abundances and community composition. The temporal dynamics of the bacterial and cyanobacterial communities, as potential viral hosts, were studied in addition to a range of environmental parameters to relate these to viral community dynamics. Cyanobacterial and bacterial communities were studied applying epifluorescence microscopy, flow cytometry, and denaturing gradient gel electrophoresis (DGGE). Both bacterial and cyanobacterial communities followed a clear seasonal cycle. Contrary to expectations, viral abundances were neither correlated to abundances of the most dominant plankton groups in Lake Loosdrecht, the bacteria and the filamentous cyanobacteria, nor could we detect a correlation between the assemblage of viral and bacterial or cyanobacterial communities during the overall period. Only during short periods of strong fluctuations in microbial communities could we detect viral community assemblages to covary with cyanobacterial and bacterial communities. Methods with a higher specificity and resolution are probably needed to detect the more subtle virus-host interactions. Viral abundances did however relate to cyanobacterial community assemblage and showed a significant positive correlation to Chl-a as well as prochlorophytes, suggesting that a significant proportion of the viruses in Lake Loosdrecht may be phytoplankton and more specific cyanobacterial viruses. Temporal changes in bacterial abundances were significantly related to viral community assemblage, and vice versa, suggesting an interaction between viral and bacterial communities in Lake Loosdrecht.  相似文献   
4.
We analyzed 17 months (August 2005 to December 2006) of continuous measurements of soil CO2 efflux or soil respiration (RS) in an 18‐year‐old west‐coast temperate Douglas‐fir stand that experienced somewhat greater than normal summertime water deficit. For soil water content at the 4 cm depth (θ) > 0.11 m3 m?3 (corresponding to a soil water matric potential of ?2 MPa), RS was positively correlated to soil temperature at the 2 cm depth (TS). Below this value of θ, however, RS was largely decoupled from TS, and evapotranspiration, ecosystem respiration and gross primary productivity (GPP) began to decrease, dropping to about half of their maximum values when θ reached 0.07 m3 m?3. Soil water deficit substantially reduced RS sensitivity to temperature resulting in a Q10 significantly < 2. The absolute temperature sensitivity of RS (i.e. dRS/dTS) increased with θ up to 0.15 m3 m?3, above which it slowly declined. The value of dRS/dTS was nearly 0 for θ < 0.08 m3 m?3, thereby confirming that RS was largely unaffected by temperature under soil water stress conditions. Despite the possible effects of seasonality of photosynthesis, root activity and litterfall on RS, the observed decrease in its temperature sensitivity at low θ was consistent with the reduction in substrate availability due to a decrease in (a) microbial mobility, and diffusion of substrates and extracellular enzymes, and (b) the fraction of substrate that can react at high TS, which is associated with low θ. We found that an exponential (van't Hoff type) model with Q10 and R10 dependent on only θ explained 92% of the variance in half‐hourly values of RS, including the period with soil water stress conditions. We hypothesize that relating Q10 and R10 to θ not only accounted for the effects of TS on RS and its temperature sensitivity but also accounted for the seasonality of biotic (photosynthesis, root activity, and litterfall) and abiotic (soil moisture and temperature) controls and their interactions.  相似文献   
5.
This study analyzes 9 years of eddy‐covariance (EC) data carried out in a Pacific Northwest Douglas‐fir (Pseudotsuga menzesii) forest (58‐year old in 2007) on the east coast of Vancouver Island, Canada, and characterizes the seasonal and interannual variability in net ecosystem productivity (NEP), gross primary productivity (GPP), and ecosystem respiration (Re) and primary climatic controls on these fluxes. The annual values (± SD) of NEP, GPP and Re were 357 ± 51, 2124 ± 125, and 1767 ± 146 g C m?2 yr?1, respectively, with ranges of 267–410, 1592–2338, and 1642–2071 g C m?2 yr?1, respectively. Spring to early summer (March–June) accounted for more than 80% of annual NEP while late spring to early autumn (May–August) was mainly responsible for its interannual variability (~80%). The major drivers of interannual variability in annual carbon (C) fluxes were annual and spring mean air temperatures (Ta) and water deficiency during late summer and autumn (July–October) when this Douglas‐fir forest growth was often water‐limited. Photosynthetically active radiation (Q), and the combination of Q and soil water content (θ) explained 85% and 91% of the variance of monthly GPP, respectively; and 91% and 96% of the variance of monthly Re was explained by Ta and the combination of Ta and θ, respectively. Annual net C sequestration was high during optimally warm and normal precipitation years, but low in unusually warm or severely dry years. Excluding 1998 and 1999, the 2 years strongly affected by an El Niño/La Niña cycle, annual NEP significantly decreased with increasing annual mean Ta. Annual NEP will likely decrease whereas both annual GPP and Re will likely increase if the future climate at the site follows a trend similar to that of the past 40 years.  相似文献   
6.
7.
The relationship between the intramolecular dynamics and the spectra has been analyzed by means of the molecular dynamics technique. Time autocorrelation functions of bond lengths, bending angles and torsional angles have been evaluated in a crystalline trans-polyacetylene system. The Fourier transforms of such functions have been compared with the densities of states obtained both for carbon and hydrogen atoms. This comparison is aimed at investigating the microscopic origin of the peaks which appear in the densities of states. This approach can be used in the analysis of the spectroscopic data of any molecular or polymeric system.  相似文献   
8.
Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi‐arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation‐induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north‐temperate ungulates which are generally reported to be energy‐limited, N and moisture may be more nutritionally limiting for desert ungulates than digestible energy.  相似文献   
9.
Water vapour and CO2 fluxes were measured using the eddy correlation method above and below the overstorey of a 21-m tall aspen stand in the boreal forest of central Saskatchewan as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Measurements were made at the 39.5-m and 4-m heights using 3-dimensional sonic anemometers (Kaijo-Denki and Solent, respectively) and closed-path gas analysers (LI-COR 6262) with 6-m and 4.7-m long heated sampling tubing, respectively. Continuous measurements were made from early October to mid-November 1993 and from early February to late-September 1994. Soil CO2 flux (respiration) was measured using a LI-COR 6000-09 soil chamber and soil evaporation was measured using Iysimetry. The leaf area index of the aspen and hazelnut understorey reached 1.8 and 3.3, respectively. The maximum daily evapotranspiration (E) rate was 5–6 mm d?1. Following leaf-out the hazelnut and soil accounted for 22% of the forest E. The estimated total E was 403 mm for 1994. About 88% of the precipitation in 1994 was lost as evapotranspiration. During the growing season, the magnitude of half-hourly eddy fluxes of CO2 from the atmosphere into the forest reached 1.2 mg CO2 m?2 s?1 (33 μmol C m?2 s?1) during the daytime. Downward eddy fluxes at the 4-m height were observed when the hazelnut was growing rapidly in June and July. Under well-ventilated night-time conditions, the eddy fluxes of CO2 above the aspen and hazelnut, corrected for canopy storage, increased exponentially with soil temperature at the 2-cm depth. Estimates of daytime respiration rates using these relationships agreed well with soil chamber measurements. During the 1994 growing season, the cumulative net ecosystem exchange (NEE) was -3.5 t C ha?1 y?1 (a net gain by the system). For 1994, cumulative NEE, ecosystem respiration (R) and gross ecosystem photosynthesis (GEP = R - NEE) were estimated to be -1.3, 8.9 and 10.2 t C ha?1 y?1 respectively. Gross photosynthesis of the hazelnut was 32% of GEP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号