首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2004年   3篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Vasoactive intestinal peptide (VIP) has been implicated in the regulation of avian reproductive activity and appears to act at the level of the hypothalamus and pituitary. This in situ hybridization histochemistry study describes the distribution of VIP receptor mRNA expression in the hypothalamus and the pituitary of reproductively active (laying) and quiescent (nonphotostimulated, incubating, and photorefractory) female turkeys and characterizes the differences observed in VIP receptor gene expression. VIP receptor mRNA, while expressed throughout the hypothalamus, was specifically expressed in areas known to contain GnRH-I neurons in the chicken, i.e., the lateral septum, medial preoptic area, anterior hypothalamus, and paraventricular nucleus. Significant differences in VIP receptor mRNA expression between different reproductive states was observed only within the infundibular nuclear complex. VIP receptor mRNA was markedly less in nonphotostimulated and photorefractory hens as compared with laying and incubating hens. The most dense VIP receptor mRNA was found in the anterior pituitary, where it was 2.4- and 3.0-fold greater in laying and incubating hens, respectively, as compared with that in nonphotostimulated ones. Hens that stopped incubating and became photorefractory displayed pituitary VIP receptor mRNA levels similar to those of nonphotostimulated birds. The changes in pituitary VIP receptor mRNA expression were positively correlated with known changes in pituitary prolactin (PRL) mRNA expression and PRL content and release. These findings indicate that the variations in PRL secretion observed across the turkey reproductive cycle are, in part, regulated by changes in VIP receptors at the pituitary level.  相似文献   
2.
Immunoassays are one of the most useful diagnostic techniques in disease assessment, drug metabolite analysis, and environmental applications due largely in part to the selectivity and sensitivity provided by antibody-antigen interactions. Here, a multiplexed immunoassay termed cleavable tag immunoassay (CTI) was performed in competitive, non-competitive, and mixed formats for the analysis of proteins and small molecule biomarkers of inflammation and tissue damage. Microchip capillary electrophoresis (MCE) with fluorescence detection was employed for the analysis of fluorescently labeled tags corresponding to the analytes of interest cleaved from the detection antibodies. For this work we have selected 3-nitrotyrosine (3-NT) a molecule indicative of reactive nitrogen species (RNS), thyroxine (T4) a molecule used to monitor thyroid gland function, and C-reactive protein (CRP) a marker of chronic inflammation as model analytes to demonstrate the assay principles. The simultaneous detection of 3-nitrotyrosine (3-NT) and thyroxine (T4) was carried out as a proof-of-principle for the competitive CTI while non-competitive CTI performance was demonstrated via the analysis of C-reactive protein (CRP). Limit of detections (LOD) and dynamic ranges were investigated. LOD for 3-NT, T4, and CRP were 0.5μg/mL, 23nM, and 5μg/mL, respectively thus demonstrating the ability of the CTI to detect proteins and small molecules within clinical reference ranges. Moreover, this is the first report of the use of mixed format CTI chemistry for the simultaneous detection of proteins (CRP) and small molecules (3-NT) in a single assay. The success of this work demonstrates the ability of CTI to analyze intact proteins and small molecule biomarkers simultaneously.  相似文献   
3.
4.
We investigated the neuroendocrine changes involved in the transition from incubating eggs to brooding of the young in turkeys. Numbers of mesotocin (MT; the avian analog of mammalian oxytocin) immunoreactive (ir) neurons were higher in the nucleus paraventricularis magnocellularis (PVN) and nucleus supraopticus, pars ventralis (SOv) of late stage incubating hens compared to the layers. When incubating and laying hens were presented with poults, all incubating hens displayed brooding behavior. c-fos mRNA expression was found in several brain areas in brooding hens. The majority of c-fos mRNA expression by MT-ir neurons was observed in the PVN and SOv while the majority of c-fos mRNA expression in dopaminergic (DAergic) neurons was observed in the ventral part of the nucleus preopticus medialis (POM). Following intracerebroventricular injection of DA or oxytocin (OT) receptor antagonists, hens incubating eggs were introduced to poults. Over 80% of those injected with vehicle or the D1 DA receptor antagonist brooded poults, while over 80% of those receiving the D2 DA receptor antagonist or the OT receptor antagonist failed to brood the poults. The D2 DA/OT antagonist groups also displayed less c-fos mRNA in the dorsal part of POM and the medial part of the bed nucleus of the stria terminalis (BSTM) areas than did the D1 DA/vehicle groups. These data indicate that numerous brain areas are activated when incubating hens initially transition to poult brooding behavior. They also indicate that DAergic, through its D2 receptor, and MTergic systems may play a role in regulating brooding behaviors in birds.  相似文献   
5.
Oxytocin (OT) is known to induce and regulate maternal behaviors in mammals via the supraoptic nucleus and paraventricular nucleus (PVN), whereas the function of mesotocin (MT; the avian homolog of OT) is poorly understood in birds. To elucidate the association of MT and the regulation of maternal behaviors in birds, we studied changes in the number of MT-immunoreactive (ir) neurons in native Thai chickens using immunohistochemistry. We observed that MT-ir neurons and fibers appeared in discrete regions located close to the third ventricle from the level of the preoptic area through the anterior hypothalamus with an abundance observed in the nucleus supraopticus, pars ventralis (SOv), nucleus preopticus medialis (POM), and PVN. The number of MT-ir neurons was low in the SOv, POM, and PVN of non-laying hens, but it increased gradually when the hens entered the laying stage, and peaked in incubating and rearing hens. We compared the number of MT-ir neurons in the SOv, POM, and PVN of native Thai hens rearing chicks (R) with that of non-rearing chicks (NR). The number of MT-ir neurons was high in the R hens, but low in the NR hens in these nuclei. For the first time, these results indicate that the association between the MT neurons and the presence of chicks might, in part, play a role in the neuroendocrine reorganization to establish and maintain maternal behaviors in native Thai chickens. MTergic activity is likely related to the contribution of rearing behavior in this equatorial precocial species.  相似文献   
6.
The families Termitidae and Rhinotermitidae are the most evolved and diverse groups of the social insects, termites (Order Isoptera), showing elaborated morphology and complex behavior. Molecular phylogeny of termites with the emphasis on these families was examined by Bayesian and maximum-likelihood analyses based on DNA sequence of mitochondrial cytochrome oxidase II (COII) gene of 31 genera sampled in Asia (mainly Thailand and Japan) along with those reported previously. Termitidae was monophyletic and originated from within polyphyletic Rhinotermitidae. Among the four subfamilies of Termitidae, Macrotermitinae was monophyletic suggesting a single common origin of fungus-growing habit characteristic for this subfamily, and was placed in the basal position in the family. A group consisting of other subfamilies Termitinae and Nasutitermitinae, though some important groups were still untouched, was the most apical but neither Termitinae nor Nasutitermitinae formed a monophyletic lineage. It was implied that, as defense systems of the soldier castes, the appearance of snapping mandibles has occurred at a single event, but the development of nasus for chemical secretion has probably not. Our tree provides some evidence concerning contradictions in the previously proposed phylogeny of termites.  相似文献   
7.
We have recently reported that male rats given liquid fructose ingestion exhibit features of cardiometabolic abnormalities including non-obese insulin resistance with impaired insulin signaling transduction in skeletal muscle (Rattanavichit Y et al. Am J Physiol Regul Integr Comp Physiol 311: R1200-R1212, 2016). While exercise can attenuate obesity-related risks of cardiometabolic syndrome, the effectiveness and potential mechanism by which exercise modulates non-obese insulin resistance have not been fully studied. The present investigation evaluated whether regular exercise by voluntary wheel running (VWR) can reduce cardiometabolic risks induced by fructose ingestion. Moreover, the potential cellular adaptations following VWR on key signaling proteins known to influence insulin-induced glucose transport in skeletal muscle of fructose-ingested rats were investigated. Male Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) without or with access to running wheel for 6 weeks. We demonstrated that VWR restored insulin-stimulated glucose transport in the soleus muscle by improving the functionality of several signaling proteins, including insulin-stimulated IRβ Tyr1158/Tyr1162/Tyr1163 (82%), IRS-1 Tyr989 (112%), Akt Ser473 (56%), AS160 Thr642 (76%), and AS160 Ser588 (82%). These effects were accompanied by lower insulin-stimulated phosphorylation of IRS-1 Ser307 (37%) and JNK Thr183/Tyr185 (49%), without significant changes in expression of proteins in the renin-angiotensin system. Intriguingly, multiple cardiometabolic abnormalities were not observed in fructose-ingested rats with access to VWR. Collectively, this study demonstrates that the development of cardiometabolic abnormalities as well as insulin resistance of skeletal muscle and defective signaling molecules in rats induced by fructose ingestion could be opposed by VWR.  相似文献   
8.
Reproductive failure associated with heat stress is a well-known phenomenon in avian species. Increased prolactin (PRL) levels in response to heat stress have been suggested as a mechanism involved in this reproductive malfunction. To test this hypothesis, laying female turkeys were subjected to 40 degrees C for 12 h during the photo-phase daily or maintained at 24-26 degrees C. Birds in each group received oral treatment with parachlorophenyalanine (PCPA; 50 mg/kg BW/day for 3 days), an inhibitor of serotonin (5-HT) biosynthesis, or immunized against vasoactive intestinal peptide (VIP). Both treatments are known to reduce circulating PRL levels. Nontreated birds were included as controls. In the control group, high ambient temperature terminated egg laying, induced ovarian regression, reduced plasma luteinizing hormone (LH) and ovarian steroids (progesterone, testosterone, estradiol) levels, and increased plasma PRL levels and the incidence of incubation behavior. Pretreatment with PCPA reduced (P < 0.05) heat stress-induced decline in egg production, increase in PRL levels, and expression of incubation behavior. Plasma LH and ovarian steroid levels of heat stressed birds were restored to that of controls by PCPA treatment. As in PCPA-treated birds, VIP immunoneutralization of heat-stressed turkeys reduced (P < 0.05) circulating PRL levels and prevented the expression of incubation behavior. But it did not restore the decline in LH, ovarian steroids, and egg production (P > 0.05). The present findings indicate that the detrimental effect of high temperature on reproductive performance may not be related to the elevated PRL levels in heat-stressed birds but to mechanism(s) that involve 5-HT neurotransmission and the induction of hyperthermia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号