首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11601篇
  免费   890篇
  国内免费   7篇
  2024年   10篇
  2023年   48篇
  2022年   146篇
  2021年   245篇
  2020年   183篇
  2019年   214篇
  2018年   329篇
  2017年   305篇
  2016年   470篇
  2015年   663篇
  2014年   794篇
  2013年   876篇
  2012年   1072篇
  2011年   1054篇
  2010年   679篇
  2009年   583篇
  2008年   772篇
  2007年   710篇
  2006年   600篇
  2005年   548篇
  2004年   495篇
  2003年   411篇
  2002年   346篇
  2001年   166篇
  2000年   153篇
  1999年   114篇
  1998年   67篇
  1997年   53篇
  1996年   34篇
  1995年   41篇
  1994年   25篇
  1993年   25篇
  1992年   29篇
  1991年   36篇
  1990年   22篇
  1989年   20篇
  1988年   20篇
  1987年   11篇
  1986年   10篇
  1985年   15篇
  1984年   17篇
  1982年   9篇
  1980年   7篇
  1979年   5篇
  1976年   7篇
  1975年   7篇
  1973年   5篇
  1972年   4篇
  1971年   6篇
  1967年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
2.
3.
Although cryopreservation has been developed and optimized over the past decades, it causes various stresses, including cold shock, osmotic stress, and ice crystal formation, thereby reducing fertility. During cryopreservation, addition of cryoprotective agent (CPA) is crucial for protecting spermatozoa from freezing damage. However, the intrinsic toxicity and osmotic stress induced by CPA cause damage to spermatozoa. To identify the effects of CPA addition during cryopreservation, we assessed the motility (%), motion kinematics, capacitation status, and viability of epididymal spermatozoa using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining. Moreover, the effects of CPA addition were also demonstrated at the proteome level using two-dimensional electrophoresis. Our results demonstrated that CPA addition significantly reduced sperm motility (%), curvilinear velocity, viability (%), and non-capacitated spermatozoa, whereas straightness and acrosome-reacted spermatozoa increased significantly (p < 0.05). Ten proteins were differentially expressed (two decreased and eight increased) (>3 fold, p < 0.05) after CPA, whereas NADH dehydrogenase flavoprotein 2, f-actin-capping protein subunit beta, superoxide dismutase 2, and outer dense fiber protein 2 were associated with several important signaling pathways (p < 0.05). The present study provides a mechanistic basis for specific cryostresses and potential markers of CPA-induced stress. Therefore, these might provide information about the development of safe biomaterials for cryopreservation and basic ground for sperm cryopreservation.  相似文献   
4.
5.
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection. [BMB Reports 2015; 48(12): 643-644]  相似文献   
6.
Summary Dispersed cells from both fresh and cryopreserved human insulinoma have been maintained in cell culture. Initial yield of viable cells was 50% for fresh and 25% for cryopreserved tissue. Viability of cells in culture was documented by increasing numbers of cells (doubling time approximately 5 d initially and 2 d at the sixth subculture for both fresh and cryopreserved tissue) and continued release of insulin over time (approximately 100 ng/ml per 105 cells at 10 d and 175 ng/ml per 105 cells at 30 d of culture for both fresh and cryopreserved tissue). Evidence that cells growing in culture were beta cells was provided by: (a) recovery of intracellular and extracellular immunoreactive insulin (IRI), (b) electron microscopic morphology, and (c) immunohistochemical staining. Cells from fresh insulinoma incubated with increasing concentrations of extracellular glucose released increasing amounts of IRI up to approximately 15 mM glucose, which paralleled changes in plasma insulin obtained during a preoperative glucose tolerance test. Under an Intergovernmental Personnel Act Exchange from the Department of Surgery, University of California, Davis, Sacramento Medical Center.  相似文献   
7.
Previous studies by us and others established that cell-cell adhesion is mediated by specific carbohydrate-to-carbohydrate interaction (CCI). Those previous studies were based on various biochemical and biophysical approaches, including the use of labeled glycosyl epitopes with fluorescent tag. However, these methods ideally require that the glycosyl epitope must be fixed to a solid phase molecule, preferably with multivalency. The purpose of the present study is to establish a CCI process using specific glycosyl residues conjugated to biotinylated diaminopyridine (BAP), and to observe: (i) clear occurrence of homotypic CCI between “Os Fr.B” having 5–6 GlcNAc termini, vs. absence of such homotypic CCI between “Os Fr.1” having 2 GlcNAc termini; (ii) occurrence of heterotypic CCI between GM3 ganglioside and Os Fr.B, vs. absence of such heterotypic CCI between GM3 and Os Fr.1. Interaction between Os Fr.B-BAP conjugate and Os Fr.B-ceramide mimetic (Os Fr.B-mCer) was demonstrated based on two experiments: (i) dose-dependent binding of Os Fr.B-BAP conjugate to polystyrene plates coated with Os Fr.B-mCer was observed in the presence of bivalent cation, a prerequisite for all CCI processes, and such binding was abolished by EDTA; (ii) binding between equal nanomolar Os Fr.B-BAP and Os Fr.B-mCer was inhibited by mM concentration Os Fr.B without conjugate, in dose-dependent manner. Thus, cell adhesion processes based on homotypic CCI between N-linked glycans having multiple GlcNAc termini, and heterotypic CCI between GM3 and such glycans, were clearly observed using BAP conjugates of glycosyl epitopes.  相似文献   
8.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
9.
In order to study the molecular actions of growth hormone on gene expression, we have cloned and characterized two unique, but related, cDNA sequences from rat liver, lambda Spi-1 and lambda Spi-2. These two cDNA sequences are complementary to rat hepatic mRNA species previously designated as Spots 3 and 20 when assayed by in vitro translation and two-dimensional gel electrophoresis. By Northern blot, the two mRNAs are both 1900 bases in length and growth hormone administered to hypophysectomized rats increases the levels of both of these mRNAs. In contrast, the combined administration of thyroxine, corticosterone, and dihydrotestosterone to hypophysectomized rats did not augment these mRNAs. The simultaneous administration of all four hormones resulted in a level greater than that observed for animals treated with growth hormone alone. Analysis of genomic DNA suggests the presence of two similar, but not identical, genes. DNA sequencing of lambda Spi-1 and lambda Spi-2 revealed that they were 90% homologous at the nucleotide level and 87% homologous at the amino acid sequence level. lambda Spi-2 has 78% homology with mouse contrapsin, 60% with human alpha 1-antichymotrypsin, and 51-55% with alpha 1-antitrypsins, all members of the serine protease inhibitor gene family. The nucleotide and deduced amino acid sequences of lambda Spi-1 and lambda Spi-2 which align with the reactive centers of known members of this family differ substantially from each other and from other members of the family. The difference in the reactive center suggests that the specificity or function of these proteins may differ from other members of serine protease inhibitor gene family.  相似文献   
10.
M Y Yoon  P F Cook 《Biochemistry》1987,26(13):4118-4125
The pH dependence of kinetic parameters and inhibitor dissociation constants for the adenosine cyclic 3',5'-monophosphate dependent protein kinase reaction has been determined. Data are consistent with a mechanism in which reactants selectively bind to enzyme with the catalytic base unprotonated and an enzyme group required protonated for peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) binding. Binding of the peptide apparently locks both of the above enzyme residues in their correct protonation state. MgATP preferentially binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/KMgATP are pH independent. The V/K for Ser-peptide is bell-shaped with pK values of 6.2 and 8.5 estimated. The pH dependence of 1/Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/KSer-peptide, while the Ki for MgAMP-PCP increases from a constant value of 650 microM above pH 8 to a constant value of 4 mM below pH 5.5. The Ki for uncomplexed Mg2+ obtained from the Mg2+ dependence of V and V/KMgATP is apparently pH independent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号