首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   1篇
  117篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   3篇
  2019年   15篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1985年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
International Journal of Peptide Research and Therapeutics - Acinetobacter baumannii is an important pathogen responsible for nosocomial infections worldwide. Trimeric autotransporters, the...  相似文献   
2.
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.  相似文献   
3.
International Journal of Peptide Research and Therapeutics - Fibroblast growth factor 21 (FGF21) is a metabolic regulator with a wide range of biological functions. Although previous studies have...  相似文献   
4.
5.
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.  相似文献   
6.
We have developed a new strategy that aims to concentrate therapeutic radionuclides within solid tumors. This approach, which we have named EMIT (enzyme-mediated insolubilization therapy), is a method for enzyme-dependent, site-specific, in vivo precipitation of a radioactive molecule (from a water-soluble precursor) within the extracellular space of solid tumors. The prodrug, ammonium 2-(2'-phosphoryloxyphenyl)-6-iodo-4-(3H)-quinazolinone, labeled with iodine-125 ((125)IPD) and its authentic compound labeled with iodine-127 (IPD) have been synthesized, purified, and characterized. The alkaline phosphatase (ALP)-mediated conversion of these water-soluble nonfluorescent prodrugs to the water-insoluble fluorescent species, iodine-125-labeled 2-(2'-hydroxyphenyl)-6-iodo-4-(3H)-quinazolinone ((125)ID) and its iodine-127-labeled derivative (ID), has been demonstrated in vitro. Biodistribution studies in mice indicate that both (125)IPD and (125)ID are minimally retained by most tissues and organs. In addition, following its intravenous injection in mice, (125)IPD is localized in ALP-rich regions and converted to (125)ID, which remains indefinitely within the tissues where it is produced. We believe that EMIT is a strategy that will lead to the active and specific concentration and entrapment of therapeutic radionuclides within solid tumors, the consequent protracted irradiation of tumor cells within the range of the emitted particles, and the effective therapy of solid tumors.  相似文献   
7.
Calprotectin (CP) is widely considered to have diverse roles including growth inhibitory and apoptosis induction in a number of tumor cell lines and antimicrobial activities. As CP has been proposed to bind metal ions with high affinity, we have studied its functional and primarily its structural behavior upon Zn2+ and Mn2+ chelation solely and along with Ca2+. We employed fluorescence spectroscopy and circular dichroism to determine the resulting modifications. Based upon our findings it is clear that treating CP with ions effectively weakened its natural growth inhibitory activity. Moreover, structural analysis of Zn2+ and Mn2+-treated CPs indicated remarkable alterations in the regular secondary structures in favor of irregular structures while Zn2+ and Mn2+ treatment of CP after incubation with Ca2+ displayed no remarkable shifts. Tertiary structure investigation using fluorescence spectroscopy showed that CP undergoes conformational changes upon Zn2+ and Mn2+ treatment whereby Trp residues of protein is slightly exposed to the hydrophilic environment, compactness of CP is compromised, whereas in Ca2+-treated CP, the tertiary structure integrity is intact upon Zn2+ and Mn2+ chelation. Interestingly, CP structural modifications upon Zn2+ and Mn2+ treatment was significantly comparable, probably due to similar radii and charges of ions. Taken all together, we have concluded that CP maintains its normal nature in Ca2+-loaded state when treated with Zn2+ and Mn2+ ions. It can be suggested that Ca2+ not only stabilize CP structure but also helps CP to keep its structure upon metal ions chelation which is involved in host organism defense system.  相似文献   
8.
A suitable bioreactor system for large scale embryo-to-plantlets conversion of Kalopanax septemlobus was established. In temporary immersion with net (TIN) bioreactor, 85% of embryos successfully produced plantlets whereas in continuous immersion with net (CIN) bioreactor, only conversion rate of 29.3% was obtained. Embryos cultured in TIN bioreactor produced more vigorous plantlets in terms of fresh weight, height, root length, roots and leaves quantity. In CIN bioreactor, Kalopanax plantlets showed high malondialdehyde (MDA) content and increased activities of reactive oxygen species (ROS)-processing enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR) indicating the occurrence of oxidative stress. However, superoxide dismutase (SOD) and catalase (CAT) showed similar activities in plantlets grown in different bioreactors. Kalopanax plantlets grown in both TIN and CIN bioreactors were harvested and transferred to greenhouse for their acclimatization. Plantlets grown in CIN bioreactor exhibited low survival rate (75.8%) compared to those grown in TIN bioreactor (100%). MDA content decreased with progression of acclimatization indicating a decrease in oxidative stress. However, MDA level in CIN derived plantlets was higher than TIN derived plantlets. In TIN derived plantlets, an increase in SOD and GR activities were observed after 1 week and thereafter decreased. CAT activity decreased while APX activity started to increase after 1 week of acclimatization. The results indicated that Kalopanax plantlets were able to overcome oxidative stress mainly through SOD activity. However, levels of antioxidant enzyme activities were higher in CIN derived plantlets than TIN derived plantlets. Kalopanax plantlets obtained from TIN bioreactor performed better during the acclimatization phase and showed higher survival rate than material obtained on CIN bioreactor or conventional culture systems.  相似文献   
9.
INTRODUCTION: Glucose transporter 1 (Glut-1) is a facilitative glucose transporter expressed in many cancers including breast cancer. Basal-like breast cancer (BLBC) is a high-risk disease associated with poor prognosis and lacks the benefit of targeted therapy. The aim of this study was to characterize the immunohistochemical (IHC) expression of Glut-1 in patients with BLBC compared with non-BLBC. MATERIALS AND METHODS: We identified 523 cases of invasive breast carcinoma from our database. The clinicopathologic findings and the biologic markers including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2) status were reviewed. IHC stains for cytokeratin 5/6 (CK5/6), epidermal growth factor receptor (EGFR), p53, and Glut-1 were performed on tissue microarray using standard procedures. BLBC was defined as ER-,PR-, Her2-, and CK5/6+ and/or EGFR+. RESULTS: Of informative cases, 14.7% were categorized as BLBC versus 85.3% as non-BLBC. Glut-1 was expressed in 42 (76.4%) of 55 BLBCs, whereas only 55 (23.8%) of 231 non-BLBCs showed immunostaining for Glut-1 (P < .001). Overall, Glut-1 expression was significantly associated with high histologic grade, ER negativity, PR negativity, CK5/6 positivity, EGFR expression, and high p53 expression (P < .001). However, there was no correlation between Glut-1 immunostaining and patient's outcome. CONCLUSIONS: Our results show that Glut-1 is significantly associated with BLBC and might be a potential therapeutic target for this aggressive subgroup of breast cancer, and this warrants further investigations.  相似文献   
10.
Trypanosomatid parasites are responsible for various human diseases, such as sleeping sickness, animal trypanosomiasis, or cutaneous and visceral leishmaniases. The few available drugs to fight related parasitic infections are often toxic and present poor efficiency and specificity, and thus, finding new molecular targets is imperative. Aminoacyl-tRNA synthetases (aaRSs) are essential components of the translational machinery as they catalyze the specific attachment of an amino acid onto cognate tRNA(s). In trypanosomatids, one gene encodes both cytosolic- and mitochondrial-targeted aaRSs, with only three exceptions. We identify here a unique specific feature of aaRSs from trypanosomatids, which is that most of them harbor distinct insertion and/or extension sequences. Among the 26 identified aaRSs in the trypanosome Leishmania tarentolae, 14 contain an additional domain or a terminal extension, confirmed in mature mRNAs by direct cDNA nanopore sequencing. Moreover, these RNA-Seq data led us to address the question of aaRS dual localization and to determine splice-site locations and the 5′-UTR lengths for each mature aaRS-encoding mRNA. Altogether, our results provided evidence for at least one specific mechanism responsible for mitochondrial addressing of some L. tarentolae aaRSs. We propose that these newly identified features of trypanosomatid aaRSs could be developed as relevant drug targets to combat the diseases caused by these parasites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号