首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   5篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   1篇
  2020年   8篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   8篇
  2014年   13篇
  2013年   9篇
  2012年   12篇
  2011年   22篇
  2010年   13篇
  2009年   8篇
  2008年   15篇
  2007年   8篇
  2006年   14篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  1969年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
1.
Copper is an essential trace element that is extremely toxic to organisms and organs at high doses. We have investigated the histological and biochemical effects of a toxic dose of copper sulfate on the liver of term Ross broiler chicks. Fertilized eggs were divided into three groups: experimental, injected with 50 mcg/0.1 ml copper sulfate in the air chambers on day 1; sham, injected with 0.1 ml saline; and control, no injection. Term chicks were killed and their livers investigated histologically, with hematoxylin–eosin-stained sections examined under light microscopy, and biochemically, for malondialdehyde and glutathione levels. Histological examinations showed copper-treated samples with granular degeneration and necrosis of hepatocytes and impairment to the cell lining of the remark cords. The samples had a congestive appearance, with blood in the vena centralis and sinusoids, slight connective tissue increase, and lymphocyte infiltration. Control and sham group sections had normal appearances. As oxidative damage parameters, in the copper-treated group, malondialdehyde levels were increased and glutathione levels decreased. In the sham and control groups, there were no significant differences. At this toxic dose, copper sulfate shows oxidative damage according to the histology of term chick liver that are confirmed biochemically by the changes in malondialdehyde and glutathione levels.  相似文献   
2.
This study evaluated the relative ability of various combinations of copper sulfate with either boric acid or calcium-precipitating agent, N′-N-(1, 8-naphthalyl) hydroxylamine (NHA-Na), to inhibit fungal degradation and attack by Formosan subterranean termites (Coptotermes formosanus Shiraki). Wood specimens were treated with either 1%, 0.5%, or 0.1% concentrations of copper sulfate, boric acid, NHA-Na, copper sulfate + boric acid, or copper sulfate + NHA-Na mixtures. Treated specimens were subjected to laboratory decay-resistance tests by using petri dishes inoculated with the Basidiomycetes fungi Tyromyces palustris and Trametes versicolor for 12 weeks. Treated wood specimens were also subjected to termite-resistance tests under laboratory conditions. Increased efficacy of copper sulfate against the brown-rot fungus T. palustris was observed when either boric acid or NHA-Na was added. The most effective treatments against the fungi tested were NHA-Na only treatments at 1% and 0.5% concentration levels. Boric acid treatments were not able to protect wood against decay after leaching because of excessive leaching of boron. Similar results were obtained in termite-resistance tests in comparison with decay-resistance tests. These results indicate that the efficacy of the treatments in preventing fungal and termite attack is a function of the type of preservative.  相似文献   
3.
Molecular and Cellular Biochemistry - Excitation–contraction coupling in normal cardiac function is performed with well balanced and coordinated functioning but with complex dynamic...  相似文献   
4.
In this study, we investigated the combined treatment of 5-fluorouracil (5-FU) and Anatolian propolis extract (PE) on colorectal cancer (CRC)using in vitro and in vivo studies. We exposed luciferase-transfected (Lovo-Luc CRC) cells and healthy colon cells (CCD-18Co) to varying concentrations of 5-FU and PE to assess their genotoxic, apoptotic, and cytotoxic effects, as well as their intracellular reactive oxygen species (iROS) levels. We also developed a xenograft model in nude mice and evaluated the anti-tumor effects of PE and 5-FU using various methods. Our findings showed that the combination of PE and 5-FU had selectivity against cancer cells, particularly at higher doses, and enhanced the anti-tumor effectiveness of 5-FU against colon CRC. The results suggest that PE can reduce side effects and increase the effectiveness of 5-FU through iROS generation in a dose-dependent manner.  相似文献   
5.
6.
This study aimed to elicit patient- and treatment-related factors that can potentially predict treatment adherence in adult ADHD. Subjects who were over 18 and received a diagnosis of ADHD were included in the study. Chart review data of 102 subjects regarding demographics, medications, comorbidities, concomitant medications and domains of functional impairment were collected, and predictors were assessed using a binominal logistical regression model. One hundred and two patients (78.4 % male) with a mean age of 28.8 (SD = 9.8, range = 18–55) years were enrolled in the study. Childhood diagnosis of ADHD, agents used for treatment (MPH or atomoxetine), individual domains of dysfunction and use of additional psychotropic drugs were not found to be related to treatment adherence. Patients with a university education and those referred for family history of ADHD were more likely to adhere to treatment (p = 0.05 and 0.03, respectively). On the other hand, reasons for referral other than ADHD were significantly more frequently related to non-adherence (p = 0.02). Treatment noncompliance remains a significant problem despite therapeutic effects of medications. Identification of predictors of non-adherence can lead to heightened awareness of special populations at risk. We have found that prior awareness on ADHD (via past history/media/friends) leading to self/clinician referral to rule out ADHD and pervasiveness of symptoms across functional domains led to better compliance in our sample. Future research with prospective design utilizing objective tools for adherence is required.  相似文献   
7.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
8.
Objectives: The purpose of this study was to determine the relationship between autonomic nervous system dysfunction and basal metabolic rate (BMR), and the effect of spasticity on basal metabolic rate. Research Method and Procedures: Twenty men (11 paraplegic and 9 tetraplegic) with American Spinal Injury Association (ASIA)‐A and ‐B grade chronic spinal cord injury (SCI) participated in this study. Total body fat mass and lean tissue mass were measured in all participants using DXA by standard methods. Patients were allocated into 2 groups to determine the effect of autonomic nervous system dysfunction on BMR: Group I (T6 and upper‐level injuries with history of autonomic dysreflexia) and Group II (T7 and lower‐level injuries without history of autonomic dysreflexia). Measurements of BMR were determined by indirect calorimetry under standardized conditions. Results: There were 13 patients in Group I and 7 patients in Group II and the difference between these two in terms of time since injury, BMI, age, weight, lean tissue mass, BMR, and BMR/kg were not significant. Conclusion: We concluded that autonomic nervous system dysfunction does not affect BMR, and it might be ignored in considering energy needs in spinal cord injury.  相似文献   
9.
BACKGROUND: Surgically induced ischemia in the arrested heart can result in changes in the mechanical properties of the myocardium. Regions of ischemia may be characterized based on the amount of epicardial deformation for a given load. Computer aided speckle interferometry (CASI), which tracks the movement of clusters of particles, is developed as a technique for measuring epicardial deformation, thereby determining the perfusion status of the passive heart. MATERIALS AND METHODS: Silicone carbide particles and retroreflective beads were dispersed randomly onto the epicardial surface of 11 isolated rabbit hearts to form speckle images. The hearts were arrested with hyperkalemic Krebs-Henseleit buffered solution. Each heart was then exposed to a series of intracavitary pressures, and at each pressure speckle images were acquired with a charge-coupled device (CCD) camera. Nine hearts were exposed to global ischemia, and two hearts were exposed to regional ischemia by occluding the second diagonal branch of the left anterior descending artery (LAD). The hearts were again loaded and the speckle images were acquired. CASI was used to determine the distribution of deformation field. RESULTS: CASI was able to determine displacements with a spatial resolution of about 50 microns. Global ischemia resulted in a significant increase in the maximum principle strain and the first invariant of the 2-D strain tensor. In the regionally ischemic heart, a large difference in deformation between the ischemic and perfused regions was clearly observed. CONCLUSION: Based on epicardial deformation, CASI is able to distinguish between perfused and ischemic myocardium, with a spatial resolution of 50 microns.  相似文献   
10.
Hyperglycemia plays a critical role in the development and progression of diabetic neuropathy. One of the mechanisms by which hyperglycemia causes neural degeneration is via the increased oxidative stress that accompanies diabetes. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) and S100B, both astrocytic markers. In the present study, we examined glial reactivity in hippocampus, cortex, and cerebellum of streptozotocin (STZ)-induced diabetic rats by determining the expression of GFAP and S-100B and we evaluated the effect of melatonin on the glial response. Western blot measurement of contents in brain regions after 6 weeks of STZ-induced diabetes indicated significant increases in these constituents compared with those in nondiabetic controls. Administration of melatonin prevented the upregulation of GFAP in all brain regions of diabetic rats. Using GFAP immunohistochemistry, we observed an increase in GFAP immunostaining in the hippocampus of STZ-diabetic rats relative to levels in the control brains. Treatment with melatonin resulted in an obvious reduction of GFAP-immunoreactive astrocytes in hippocampus. Like GFAP, S100B levels also were increased in all three brain areas of diabetic rats, an effect also reduced by melatonin treatment. Finally, the levels of lipid peroxidation products were elevated as a consequence of diabetes, with this change also being prevented by melatonin. These results suggest that diabetes causes increased glial reactivity possibly due to elevated oxidative stress, and administration of melatonin represents an achievable adjunct therapy for preventing gliosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号