首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
2.
Site-directed mutagenesis was used to study the structural basis of color diversity of fluorescent proteins by the example of two closely related proteins from one organism (coral polyp Zoanthus sp.), one of which produces green and the other, yellow fluorescence. As a result, the following conversions of emission colors were performed: from yellow to green, from yellow to a dual color (yellow and green), and from green to yellow. The saltatory character of the spectral transitions and the manifestation of the dual-color fluorescence suggest that chemically different fluorophores are responsible for the green and yellow fluorescence. The simultaneous presence of three residues, Gly63, Lys65, and Asp68, is necessary for the efficient formation of the yellow rather than green fluorophore.  相似文献   
3.
The possibility of enhancing heterologous gene expression in mammalian cells by the introduction of an intron in 3′ untranslated region (UTR) was investigated. To this end, a fragment of human betaglobin gene with intron 2 and flanked exon regions was introduced into the vector-encoding green fluorescent protein TagGFP2 after the TagGFP2 stop-codon (Int+). The distance between the stop-codon and the exon junction was 35 nucleotides. It ensured that Int+ mRNA was resistant to degradation by nonsense mediated decay (NMD) machinery. A control vector Intcontained corresponding intronless sequence of the beta-globin mRNA. On the same plasmid, the second gene encoded far-red fluorescent protein Katushka was used to normalize fluorescence for transfection efficiency and expression level in individual cells. Transiently transfected HEK293T cells were analysed by flow cytometry. It was shown that cells transfected with plasmid carrying the Int+ gene possess 1.8 ± 0.2 fold higher green fluorescence compared to Intcells. The observed effect was used to enhance expression of destabilized variants of yellow fluorescent protein TurboYFP-dest with high degradation rate in mammalian cells. We believe that introduction of beta-globin intron in the 3′-UTR of the chimeric gene can be used to enhance its expression and may be advantageous in some cases when usage of 5′ UTR intron is inappropriate.  相似文献   
4.
We have isolated a novel isoform of phospholipase A(2). This enzyme was designated srPLA(2) because it was discovered while analyzing the proteins interacting with different forms of the v-Src oncoproteins isolated from Rous sarcoma virus-transformed hamster cells. It contains all the functional regions of the PLA(2) group IIA proteins but differs at its C-terminal end where there is an additional stretch of 8 amino acids. The SrPLA(2) isoform was detected as a 17-kDa precursor in cells and as a mature 14-kDa form secreted in culture medium. A direct interaction of the 17-kDa precursor with the Src protein was observed in lysates of transformed cells. Both the 17- and 14-kDa forms were found to be phosphorylated on tyrosine. To our knowledge, this is the first report of a PLA(2) group II protein that is tyrosine phosphorylated. We surmise that srPLA(2) interacts with the Src protein at the cell membrane during the process of its maturation.  相似文献   
5.
The cDNAs encoding the genes of new proteins, homologous to the well-known Green Fluorescent Protein (GFP) from the hydroid jellyfish Aequorea victoria, were cloned. Two green fluorescent proteins from one unidentified anthomedusa, a yellow fluorescent protein from Phialidium sp., and a nonfluorescent chromoprotein from another unidentified anthomedusa were characterized. Thus, a broad diversity of GFP-like proteins among the organisms of the class Hydrozoa in both spectral properties and primary structure was shown.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 49–53.Original Russian Text Copyright © 2005 by Yanushevich, Shagin, Fradkov, Shakhbazov, Barsova, Gurskaya, Labas, Matz, K. Lukyanov, S. Lukyanov.  相似文献   
6.
A genetically encoded photosensitizer   总被引:2,自引:0,他引:2  
Photosensitizers are chromophores that generate reactive oxygen species (ROS) upon light irradiation. They are used for inactivation of specific proteins by chromophore-assisted light inactivation (CALI) and for light-induced cell killing in photodynamic therapy. Here we report a genetically encoded photosensitizer, which we call KillerRed, developed from the hydrozoan chromoprotein anm2CP, a homolog of green fluorescent protein (GFP). KillerRed generates ROS upon irradiation with green light. Whereas known photosensitizers must be added to living systems exogenously, KillerRed is fully genetically encoded. We demonstrate the utility of KillerRed for light-induced killing of Escherichia coli and eukaryotic cells and for inactivating fusions to beta-galactosidase and phospholipase Cdelta1 pleckstrin homology domain.  相似文献   
7.
The gene of a new red fluorescent protein zoan2RFP from coral polyp Zoanthus sp., a homologue of the known green fluorescent protein from the jellyfish Aequorea victoria, was cloned. At early stages of maturation, zoan2RFP exhibits green fluorescence, which then turns to the red one. A similar phenomenon was recently reported for the E5 mutant of the red fluorescent coral protein DsRed. Zoan2RFP differs from E5 by faster maturation kinetics and the complete disappearance of green fluorescence in the mature protein. Naturally occurring proteins of this type can be considered as intermediate forms between the green and red fluorescent proteins, which are formed during the microevolution of fluorescent proteins.  相似文献   
8.
Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.  相似文献   
9.
We have employed a new approach to generate novel fluorescent proteins (FPs) from red absorbing chromoproteins. An identical single amino acid substitution converted novel chromoproteins from the species Anthozoa (Heteractis crispa, Condylactis gigantea, and Goniopora tenuidens) into far-red FPs (emission lambda(max)=615-640 nm). Moreover, coupled site-directed and random mutagenesis of the chromoprotein from H. crispa resulted in a unique far-red FP (HcRed) that exhibited bright emission at 645 nm. A clear red shift in fluorescence of HcRed, compared to drFP583 (by more than 60 nm), makes it an ideal additional color for multi-color labeling. Importantly, HcRed is excitable by 600 nm dye laser, thus promoting new detection channels for multi-color flow cytometry applications. In addition, we generated a dimeric mutant with similar maturation and spectral properties to tetrameric HcRed.  相似文献   
10.
Molecular Biology - The high variability of the influenza A virus poses a significant threat to public health, therefore monitoring viral strains and studying their genetic properties are important...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号