首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   83篇
  2021年   17篇
  2020年   10篇
  2019年   14篇
  2018年   17篇
  2017年   26篇
  2016年   37篇
  2015年   60篇
  2014年   73篇
  2013年   85篇
  2012年   90篇
  2011年   103篇
  2010年   69篇
  2009年   68篇
  2008年   95篇
  2007年   105篇
  2006年   91篇
  2005年   118篇
  2004年   104篇
  2003年   93篇
  2002年   84篇
  2001年   23篇
  2000年   24篇
  1999年   24篇
  1998年   13篇
  1997年   26篇
  1996年   14篇
  1995年   21篇
  1994年   20篇
  1993年   14篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   19篇
  1988年   16篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   12篇
  1981年   16篇
  1980年   7篇
  1979年   3篇
  1978年   14篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
排序方式: 共有1743条查询结果,搜索用时 31 毫秒
1.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
2.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
3.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
4.
Effects of catecholamines on immunoreactive corticotropin-releasing factor (I-CRF) release from the rat hypothalamus were examined using a rat hypothalamic perifusion system and a rat CRF RIA in vitro. Norepinephrine had a potent inhibitory effect on I-CRF release in a dose-dependent manner at 0.1 nM-1 microM concentrations, but dopamine did not. This inhibitory effect of norepinephrine was completely blocked by propranolol, but only partially blocked by phentolamine. Isoproterenol also had a potent inhibitory effect at 0.01-100 nM concentrations, and a high dose of phenylephrine (10 nM) inhibited I-CRF release. Clonidine did not influence I-CRF release. These results suggest that norepinephrine inhibits I-CRF release mainly through the beta-adrenergic receptor and partially through the alpha 1-receptor.  相似文献   
5.
6.
Axonal transport of peptidylglycine alpha-amidating monooxygenase (PAM) activity was studied in rat sciatic nerves from 12 to 120 h after double ligations. The anterograde axonal transport increased and reached a plateau between 48 and 72 h and then decreased. The flow rate was 100 mm/day, and the molecular mass of the active entity was 70 kDa, which was determined by gel filtration. In contrast, there was no evidence for significant retrograde axonal transport. Anterograde axonal transport of immunoreactive cholecystokinin, a carboxy-terminal-amidated putative neuropeptide, was also found. These results suggest that PAM is transported by a rapid axonal flow and may play a role as a processing enzyme during transport or in the terminals of rat sciatic nerves.  相似文献   
7.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
8.
Treatment of a mixture of Cys(R)(O) and Cys(R) with an acid was found to generate cystine in fairly good yields, when suitable R, R, and an acid were selected. An unsymmetrical cystine peptide was prepared by treatment of a mixture of Z(OMe)-Cys(R) (0)-Ala-NH2 (R=Acm or MBzl) and Z(OMe)-Cys(MBzl)-Gly-OBzl with TFA or 1 M TFMSA/TFA.3 Oxytocin was obtained in an excellent yield by TFA treatment of the protected peptide containing Cys(Acm)(0) and Cys(MBzl). Thus, formation of the disulfide bond was found feasible at the position of Cys(R) (0).The following abbreviations are used Boc t-butyloxycarbonyl - Z(OMe) p-methoxybenzyloxycarbonyl - MBzl p-methoxybenzyl - Acm acetamidomethyl - Bzl benzyl - Ad l-adamantyl - tBu t-butyl - TFA trifluoroacetic acid - TFMSA trifluoromethanesulfonic acid - TMSOTf trimethylsilyl trifluoromethane sulfonate  相似文献   
9.
T Noda  H Yajima    Y Ito 《Journal of virology》1988,62(1):313-324
Alteration of the growth properties of the established murine fibroblast cell lines NIH 3T3 and 3Y1 was studied in monolayer cultures and in cells suspended in semisolid medium after introduction of a cloned human papillomavirus type 16 (HPV16) DNA. HPV 16 DNA stimulated both cell lines to grow beyond their saturation densities in monolayer cultures without any apparent morphological changes or tendency to pile up. These cells were also stimulated to grow in soft agar. Since essentially all the cells that received the viral gene were stimulated to grow, the growth-stimulatory activity of HPV16 appeared to be due to the direct effect of a viral gene function. The NIH 3T3 cells showed an additional change in growth properties upon prolonged incubation of dense monolayers of cells containing the HPV16 DNA; morphologically recognizable dense foci appeared at a frequency of about 10(-3). These cells, when cloned from the foci, grew more rapidly in soft agar than the parental cells and were morphologically transformed. In other words, there were two sequential steps in cell transformation induced by HPV16. Practically all the viral DNAs were present in the cells as large rearranged multimers and were integrated into host chromosomal DNA. There was no obvious difference in the state of viral DNA in the cells of the original clone or the three subclones derived from it as dense foci. There was no difference in the amount or the number of viral RNA species expressed in the cells at these two stages. The secondary changes in the growth properties of NIH 3T3 cells appear to be due to some cellular alterations.  相似文献   
10.
Summary Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号