首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42189篇
  免费   3242篇
  国内免费   3052篇
  2024年   67篇
  2023年   459篇
  2022年   964篇
  2021年   2239篇
  2020年   1444篇
  2019年   1832篇
  2018年   1894篇
  2017年   1335篇
  2016年   1832篇
  2015年   2530篇
  2014年   3010篇
  2013年   3287篇
  2012年   3775篇
  2011年   3379篇
  2010年   2193篇
  2009年   1797篇
  2008年   2161篇
  2007年   1893篇
  2006年   1732篇
  2005年   1426篇
  2004年   1199篇
  2003年   1072篇
  2002年   909篇
  2001年   792篇
  2000年   680篇
  1999年   672篇
  1998年   380篇
  1997年   407篇
  1996年   361篇
  1995年   343篇
  1994年   348篇
  1993年   278篇
  1992年   329篇
  1991年   255篇
  1990年   233篇
  1989年   210篇
  1988年   136篇
  1987年   106篇
  1986年   97篇
  1985年   97篇
  1984年   75篇
  1983年   66篇
  1982年   47篇
  1981年   16篇
  1980年   20篇
  1979年   21篇
  1978年   16篇
  1977年   10篇
  1976年   11篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
Application of 1% methol, which, along with cold, activates specific thermosensitive ionic channels, changes the number of functioning cold receptors on the skin of the forearm similarly to the cold exposure test; however, it does not affect the number of heat receptors and does not significantly change the threshold of cold sensation. Group variants of responses to menthol that indicate individual differences in the sensitivity of skin receptors to the effects of methol and cold have been found. The results obtained give grounds to suggest that, from the variant of response to menthol (a decrease, increase, or absence of changes in the number of functioning cold receptors 5 min after menthol application), it is possible to predict specific features of response to cold.  相似文献   
3.
4.
5.
6.
  相似文献   
7.
Inflammatory responses mediated by activated microglia play a pivotal role in the pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated neurocognitive disorders. Studies on identification of specific targets to control microglia activation and resultant neurotoxic activity are imperative. Increasing evidence indicate that voltage-gated K+ (Kv) channels are involved in the regulation of microglia functionality. In this study, we investigated Kv1.3 channels in the regulation of neurotoxic activity mediated by HIV-1 glycoprotein 120 (gp120)-stimulated rat microglia. Our results showed treatment of microglia with gp120 increased the expression levels of Kv1.3 mRNA and protein. In parallel, whole-cell patch-clamp studies revealed that gp120 enhanced microglia Kv1.3 current, which was blocked by margatoxin, a Kv1.3 blocker. The association of gp120 enhancement of Kv1.3 current with microglia neurotoxicity was demonstrated by experimental results that blocking microglia Kv1.3 attenuated gp120-associated microglia production of neurotoxins and neurotoxicity. Knockdown of Kv1.3 gene by transfection of microglia with Kv1.3-siRNA abrogated gp120-associated microglia neurotoxic activity. Further investigation unraveled an involvement of p38 MAPK in gp120 enhancement of microglia Kv1.3 expression and resultant neurotoxic activity. These results suggest not only a role Kv1.3 may have in gp120-associated microglia neurotoxic activity, but also a potential target for the development of therapeutic strategies.  相似文献   
8.
Cell respiratory activity of protoplasts obtained from the wild type of Neurospora crassa and photoreceptor complex WCC—white collar 1 (wc-1) and white collar 2 (wc-2)—mutants of Neurospora crassa strains was investigated. Respiration inhibition by KCN in the presence of 25 mM succinate was similar in all strains and did not exceed 83–85% against control. The significant induction of KCN-resistant respiratory pathway occurred under 1% glucose oxidation in wc-1 and wc-2 mutants if compared with the wild type strains. The inhibitors of the main (cytochrome) pathway of electron transfer in mitochondria—1 mM KCN and antimycin A (4 μg/ml)—blocked the respiration rate of the protoplasts from N. crassa wild type by 75%, while the cell respiration of wc-1 and wc-2 strains was suppressed by approximately 50%. The specific inhibitor of alternative oxidase—10 mM salicylhydroxamic acid (SHAM)—in combination with the blockers of mitochondrial electron transfer chain caused the total suppression of respiratory activity of protoplasts in all studied strains. It is supposed that an increase of KCN-resistance in WCC mutants under glucose oxidation is connected with alternative oxidase activation as the result of failure in reception and signal transduction of active oxygen species.  相似文献   
9.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号