首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   12篇
  国内免费   35篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   24篇
  2020年   15篇
  2019年   18篇
  2018年   10篇
  2017年   11篇
  2016年   16篇
  2015年   26篇
  2014年   21篇
  2013年   18篇
  2012年   25篇
  2011年   25篇
  2010年   10篇
  2009年   12篇
  2008年   20篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
1.
2.
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 104 times slower than that of action potentials. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
本文记述采自新疆南部的裸蝗属Conophyma Zub.二新种.新种“友谊裸蝗”Conophyma amica近似于昭苏裸蝗C.zhaosuensis Huang,以下列特征区别于后者:1)雄性肛上板两后角明显突出,后缘中央锐角形突出;2)后足胫节红褐色.新种“红胫裸蝗”C.rufitibia与C.alajense Misth.相似,其区别为:1)新种雄性尾片显著较大;2)雄性尾须较长,明显长过肛上板后缘中央的突起,3)雌性下产卵瓣下外缘缺一明显的大齿.红胫裸蝗亦近似于C.alamasyi(Kuthy),但可以下述特征区别之:1)雄性肛上板近方形,侧缘中部具一钝瘤状突起;2)雄性腹部背面具二条淡色纵带.模式标本均保存在新疆八一农学院植保系.  相似文献   
4.
果树介壳虫寄生蜂资源的研究   总被引:4,自引:0,他引:4  
介壳虫是果树的重要害虫,研究利用寄生蜂的自然控制作用是果树介壳虫生物防治和综合治理的重要途径。本论述了果树介壳虫寄生蜂资源的研究,报道了小蜂总科寄生蜂5科25属63种。  相似文献   
5.
沈桐  江进  李宁  罗晓楠 《微生物学报》2023,63(2):465-482
相比于氨氮,天然水体中的硝酸盐氮通常更稳定,导致更难将其从水中去除。由于好氧反硝化可以在有氧环境下进行反硝化作用去除硝酸盐氮,该过程对含有较高溶解氧的天然水体中硝酸盐氮处理有重要作用。本文综述了好氧反硝化菌的分离纯化现状、微生物代谢机制和环境影响因子,并介绍了功能菌群在微污染饮用水源水生物修复的应用研究进展。与一般的厌氧反硝化类似,好氧反硝化菌的种属分布较广,常见的如假单胞菌属(Pseudomoas)、产碱杆菌属(Alcaligenes)、副球菌属(Paracoccus)和芽孢杆菌属(Bacillus)等所属部分微生物均有好氧反硝化能力。大部分好氧反硝化菌株在最佳生长条件下(25–37℃、溶解氧浓度为3–5mg/L、pH为7–8、碳氮比为5–10)具有高效的脱氮效率。但目前好氧反硝化作用在微污染饮用水源水的生物修复方面的应用仍有着脱氮性能不稳定、菌剂流失等不足。此外,目前较少相关中试及实际工程应用的研究,需要进一步的深入探究。  相似文献   
6.
The incidence of melanoma is rising globally including China. Comparing to Caucasians, the incidence of non‐cutaneous melanomas is significantly higher in Chinese. Herein, we performed genomic profiling of 89 Chinese surgically resected primary melanomas, including acral (n = 54), cutaneous (n = 22), and mucosal (n = 13), by hybrid capture‐based next‐generation sequencing. We show that mucosal melanomas tended to harbor more pathogenic mutations than other types of melanoma, though the biological significance of this finding remains uncertain. Chromosomal arm‐level alterations including 6q, 9p, and 10p/q loss were highly recurrent in all subtypes, but mucosal melanoma was significantly associated with increased genomic instability. Importantly, 7p gain significantly correlated with unfavorable clinical outcomes in non‐cutaneous melanomas, representing an intriguing prognostic biomarker of those subtypes. Furthermore, focal amplification of 4q12 (KIT, KDR, and PDGFRα) and RAD51 deletion were more abundant in mucosal melanoma, while NOTCH2 amplification was enriched in acral melanoma. Additionally, cutaneous melanomas had higher mutation load than acral melanomas, while mucosal melanomas did not differ from other subtypes in mutation burden. Together, our data revealed important features of acral and mucosal melanomas in Chinese including distinctive driver mutation pattern and increased genomic instability. These findings highlight the possibilities of combination therapies in the clinical management of melanoma.  相似文献   
7.
Purpose

Bio-jet fuel derived from energy crops has been promoted by governments around the world through policies such as the Carbon Offsetting and Reduction Scheme for International Aviation. The environmental impact and techno-economic analysis of bio-jet fuel are particularly pertinent to China because China is under huge pressure to reduce emissions, endeavouring to meet bio-economic goals.

Methods

An LCA study was conducted on the production of bio-jet fuel from jatropha and castor by estimating the well-to-wake emissions and its economic impact. The functional unit was 1 MJ of bio-jet fuel, and field survey data was used in inventory analysis. A scenario analysis was performed to measure diverse conditions, including the planting conditions, planting regions, allocation methods, and hydrogen sources. A techno-economic analysis that combined the production costs and co-product credits was performed to calculate the minimum bio-jet fuel selling price (MJSP) based on a plant capacity of 2400 metric tonnes of feedstock per day.

Results and discussion

Compared to the environmental impacts to the fossil jet fuel, the use of biofuel would reduce the majority environmental impacts by 36–85%, when a 1:1 displacement of fossil jet fuel is considered, though the human toxicity potential impact was 100% higher. The scenario analysis indicated that (i) planting castor in harsh and unevenly distributed conditions and jatropha in stable or fertile conditions can leverage their respective advantage; (ii) the global warming potential (GWP) from castor planting in the region of north-east China ranges from 34 to 48 g CO2 eq/MJ; (iii) the GWP produced through the steam methane reforming process can be reduced by 16–17%, using advances in technological processes. The MJSP for fuel produced from jatropha and castor under the basic scenario is estimated to be 5.68 and 4.66 CNY/kg, respectively, which falls within the current market price range of 4.5–7.5 CNY/kg.

Conclusions

Bio-jet fuel from jatropha and castor oilseeds offers potential environmental benefits if they can reduce fossil jet fuel on an energy-equivalent basis. However, these benefits are likely to be reduced by the rebound effect of the fuel market. Future research is needed to better understand the magnitude of the rebound effect in China and what policy interventions can be implemented to alleviate it. Scenario analysis demonstrated the feasibility and potential of bio-jet fuel development from multiple perspectives and technological progress are conducive to the realization of environmental protection policies.

  相似文献   
8.
Strigolactones (SLs) are essential host recognition signals for both root parasitic plants and arbuscular mycorrhizal fungi, and SLs or their metabolites function as a novel class of plant hormones regulating shoot and root architecture. Our previous study indicated that nitrogen (N) deficiency as well as phosphorus (P) deficiency in sorghum enhanced root content and exudation of 5-deoxystrigol, one of the major SLs produced by sorghum. In the present study, we examined how N and P fertilization affects SL production and exudation in sorghum plants subjected to short- (5 days) or long-term (10 days) N or P deficiency and demonstrated their common and distinct features. The root contents and exudation of SLs in the N- or P-deficient sorghum plants grown for 6, 12 or 24 h with or without N or P fertilization were quantified by LC–MS/MS. In general, without fertilization, root contents and exudation of SLs stayed at similar levels at 6 and 12 h and then significantly increased at 24 h. The production of SLs responded more quickly to P fertilization than the secretion of SLs, while regulation of SL secretion began earlier after N fertilization. It is suggested that sorghum plants regulate SL production and exudation when they are subjected to nutrient deficiencies depending on the type of nutrient and degree of deficiency.  相似文献   
9.
Morphology and miscibility control are still a great challenge in polymer solar cells. Despite physical tools being applied, chemical strategies are still limited and complex. To finely tune blend miscibility to obtain optimized morphology, chemical steric engineering is proposed to systemically investigate its effects on optical and electronic properties, especially on a balance between crystallinity and miscibility. By changing the alkylthiol side chain orientation different steric effects are realized in three different polymers. Surprisingly, the photovoltaic device of the polymer PTBB‐m with middle steric structure affords a better power conversion efficiency, over 12%, compared to those of the polymers PTBB‐o and PTBB‐p with large or small steric structures, which could be attributed to a more balanced blend miscibility without sacrificing charge‐carrier transport. Space charge‐limited current, atomic force microscopy, grazing incidence wide angle X‐ray scattering, and resonant soft X‐ray scattering measurements show that the steric engineering of alkylthiol side chains can have significant impacts on polymer aggregation properties, blend miscibility, and photovoltaic performances. More important, the control of miscibility via the simple chemical approach has preliminarily proved its great potential and will pave a new avenue for optimizing the blend morphology.  相似文献   
10.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号