首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 16 毫秒
1.
Li  Xiangzhe  Song  Xinjian  Fang  Lu  Ding  Jie  Qi  Longju  Wang  Qinghua  Dong  Chuanming  Wang  Sheng  Wu  Jiahuan  Wang  Tong  Wu  Qinfeng 《Neurochemical research》2022,47(6):1679-1691
Neurochemical Research - Spasticity is a typical consequence after spinal cord injury (SCI). The critical reasons are reducing the synthesis of Gamma-Aminobutyric Acid (GABA), glycine and potassium...  相似文献   
2.
3.
Myostatin, which is a highly conservative gene among breeds, is a negative regulator of muscle. The 3' coding region of wild boar and crossbred pig myostatin was cloned by RT - PCR and sequenced. Compared with that of GenBank, the homology of the nucleotide sequence between wild bear and crossbred pig is identical in this region indicating that domestic pigs were evolved from wild boar and there was not changed in this region during the evolution processes.  相似文献   
4.
Pigs have experienced dramatic selection due to domestication, which has led to many different phenotypes when compared to their wild counterparts, especially in the last several decades. Currently, genome‐wide scans in both cattle and humans showing positive selection footprints have been investigated. However, few studies have focused on porcine selection footprints, particularly on a genome‐wide scale. Surveying for selection footprints across porcine genomes can be quite valuable for revealing the genetic mechanisms of phenotypic diversity. Here, we employed a medium sequencing depth (5–20x/site per individual, on average) approach called genotyping by genome reducing and sequencing (GGRS) to detect genome‐wide selection signatures of two domestic pig breeds (Yorkshire and Landrace) that have been under intensive selection for traits of muscle development, growth and behavior. The relative extended haplotype homozygosity test, which identifies selection signatures by measuring the characteristics of haplotypes’ frequency distribution within a single population, was also applied to identify potential positively selected regions. As a result, signatures of positive selection were found in each breed. However, most selection signatures were population specific and related to genomic regions containing genes for biological categories including brain development, metabolism, growth and olfaction. Furthermore, the result of the gene set enrichment analysis indicated that selected regions of the two breeds presented a different over‐representation of genes in the Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathways. Our results revealed a genome‐wide map of selection footprints in pigs and may help us better understand the mechanisms of selection in pig breeding.  相似文献   
5.
Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents.  相似文献   
6.
The plasma membrane transport proteins belong to SoLute Carrier 15 (SLC15) family and two members of this family have been characterized extensively in higher vertebrates, namely PEPT1 and PEPT2. Despite many efforts have made to define a pharmacophore model for efficient binding and transporting of substrates, there is not a comprehensive study performed to elucidate the evolutionary mechanisms among the SLC15 family members and to statistically evaluate sequence conservation and functional divergence between members. In this study, we compared and contrasted the rates and patterns of molecular evolution of 2 PEPT genes. Phylogenetic tree assembly with all available vertebrate PEPTs suggests that the PEPTs originated by duplications and diverged from a common protein at the base of the eukaryotic tree. Topological structure demonstrates both members share the similar hydrophobic domains (TMDs), which have been constrained by purifying selection. Although both genes show qualitatively similar patterns, their rates of evolution differ significantly due to an increased rate of synonymous substitutions in the structural domains in one copy, suggesting substantial differences in functional constraint on each gene. Site-specific profiles were established by posterior probability analysis revealing significantly divergent regions mainly locate at the hydrophobic region between predicted transmembrane domains 9 and 10 of the proteins. Thus, these results provide the evidence that several amino acid residues with reduced selective constraints are largely responsible for functional divergence between the paralogous PEPTs. These findings may provide a starting point for further experimental verifications.  相似文献   
7.

Background  

Reproduction in pigs is one of the most economically important traits. To improve the reproductive performances, numerous studies have focused on the identification of candidate genes. However, it is hard for one to read all literatures thoroughly to get information. So we have developed a database providing candidate genes for reproductive researches in pig by mining and processing existing biological literatures in human and pigs, named as ReCGiP.  相似文献   
8.
Single nucleotide polymorphisms (SNPs) are essential for identifying the genetic mechanisms of complex traits. In the present study, we applied genotyping by genome reducing and sequencing (GGRS) method to construct a 252-plex sequencing library for SNP discovery and genotyping in chicken. The library was successfully sequenced on an Illumina HiSeq 2500 sequencer with a paired-end pattern; approximately 400 million raw reads were generated, and an average of approximately 1.4 million good reads per sample were generated. A total of 91,767 SNPs were identified after strict filtering, and all of the 252 samples and all of the chromosomes were well represented. Compared with the Illumina 60K chicken SNP chip data, approximately 34,131 more SNPs were identified using GGRS, and a higher SNP density was found using GGRS, which could be beneficial for downstream analysis. Using the GGRS method, more than 3528 samples can be sequenced simultaneously, and the cost is reduced to $18 per sample. To the best of our knowledge, this study describes the first report of such highly multiplexed sequencing in chicken, indicating potential applications for genome-wide association and genomic selection in chicken.  相似文献   
9.
Wang Q  Wang M  Zhang X  Hao B  Kaushik SK  Pan Y 《Genetica》2011,139(8):973-983
The Arabidopsis thaliana WRKY proteins are characterized by a sequence of 60 amino acids including WRKY domain. It is well established that these proteins are involved in the regulation of various physiological programs unique to plants including pathogen defense, senescence and response to environmental stresses, which attracts attention of the scientific community as to how this family might have evolved. We tried to satisfy this curiosity and analyze reasons for duplications of these gene sequences leading to their diversified gene actions. The WRKY sequences available in Arabidopsis thaliana were used to evaluate selection pressure following duplication events. A phylogenetic tree was constructed and the WRKY family was divided into five sub-families. After that, tests were conducted to decide whether positive or purified selection played key role in these events. Our results suggest that purifying selection played major role during the evolution of this family. Some amino acid changes were also detected in specific branches of phylogeny suggesting that relaxed constraints might also have contributed to functional divergence among sub-families. Sites relaxed from purifying selection were identified and mapped onto the structural and functional regions of the WRKY1 protein. These analyses will enhance our understanding of the precise role played by natural selection to create functional diversity in WRKY family.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号