首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2021年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 265 毫秒
1
1.
A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea–urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1–10 mM (r = 0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P < 0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused.  相似文献   
2.
A real-time capacitive sensor based on a potentiostatic step method was developed. It can display in real-time the evoked current waveform, capacitance and the electrical resistance of elements serially connected to the insulation layer on the electrode as a function of time as well as the ohmic resistance of the insulation layer. These features enable the user to observe the association and dissociation of the affinity binding pairs and to evaluate the insulating property of the electrode surface during measurement. The system allows the setting of potential pulse height, pulse interval, gain, filter, and sampling frequency, enabling the system to be more flexible. The performance of the system was firstly evaluated with equivalent circuits. Under suitable parameter settings it provided good accuracy of both the capacitance and resistance. Using the affinity binding pair of human serum albumin (HSA) and anti human serum albumin (anti-HSA) the measured capacitance change was used for the direct detection of HSA. The developed system provided the same sensitivity as the commercially available potentiostat (P>0.05). The proposed system was then applied to analyse HSA in real urine samples and the results agreed well with the immunoturbidimetric assay (P>0.05). The proposed system can be applied for capacitance measurement to directly detect other target analytes using different affinity binding pairs. Other applications such as kinetics analysis of the interaction between affinity bindings, thickness analysis, and the study of the insulation property of the modified layer are also promising.  相似文献   
3.
Two flow-injection biosensor systems using semi disposable enzyme reactor have been developed to determine carbamate pesticides in water samples. Acetylcholinesterase was immobilized on silica gel by covalent binding. pH and conductivity electrodes were used to detect the ionic change of the sample solution due to hydrolysis of acetylcholine. Carbamate pesticides inhibited acetylcholinesterase and the decrease in the enzyme activity was used to determine these pesticides. Parameters influencing the performance of the systems were optimized to be used in the inhibition procedure. Carbofuran and carbaryl were used to test these systems. Detection limits for the potentiometric and conductimetric systems were both at 10% inhibition corresponding to 0.02 and 0.3 ppm of carbofuran and carbaryl, respectively. Both systems also provided the same linear ranges, 0.02-8.0 ppm for carbofuran, and 0.3-10 ppm for carbaryl. The analysis of pesticides was done a few times before the reactor was disposed. Percentages of inhibition obtained from different reactors were reproducible, therefore, no recalibration was necessary when changing the reactor. The biosensors were used to analyze carbaryl in water samples from six wells in a vegetable growing area. Both systems could detect the presence of carbaryl in the samples and provided good recoveries of the added carbaryl, i.e., 80-106% for the potentiometric system and 75-105% for the conductimetric system. The presence of carbaryl in water samples analyzed by the biosensors was confirmed by gas chromatography-mass spectrometric system. These biosensors do not require any sample preconcentration and are suitable for detecting pesticides in real water samples.  相似文献   
4.
Objectives

This study aimed to screen, characterize, and annotate the genome along with the comparison of GABA synthesis genes presented in lactic acid bacteria (LAB).

Results

Thirty-five LAB isolates from fermented foods were screened for GABA production using thin-layer chromatography (TLC). Fifteen isolates produced GABA ranging from 0.07 to 22.94 g/L. Based on their GTG5 profiles, phenotypic, and genotypic characteristics, isolates LSI1-1, LSI1-5, LSI2-1, LSI2-2, LSI2-3, LSI2-5, and LSM3-1-4 were identified as Lactobacillus plantarum subsp. plantarum; isolate LSM1-4 was Lactobacillus argentoratensis; isolates CAB1-2, CAB1-5, CAB1-7, and LSI1-4 were Lactobacillus pentosus; and CAB1-1, LSM3-1-1 and LSM3-2-3 were Lactobacillus fermentum. Strains LSI2-1 and CAB1-7 from pickled vegetables were selected for genome analysis. The gadA gene (1410 bp, 470aa) was encountered in GABA production of both strains and no other glutamate decarboxylase (GAD) genes were found in the genomes when compared with other LAB strains. The presence of gadA is evidence for GABA production. Strains LSI2-1 and CAB1-7 produced 22.94 g/L and 11.59 g/L of GABA in GYP broth supplemented with 3% (w/v) MSG at 30 °C for 72 h, respectively.

Conclusions

Our report highlights the characterization of LAB and GABA production of L. plantarum LSI2-1 strain with its GABA synthesis gene.

Graphic abstract

GABA production of strains LSI2-1 and CAB1-7 in GYP broth with 3% (w/v) MSG and comparative GAD genes

  相似文献   
5.
A label-free immunosensor based on a modified gold electrode incorporated with silver (Ag) nanoparticles (NPs) to enhance the capacitive response to microcystin-LR (MCLR) has been developed. Anti-microcystin-LR (anti-MCLR) was immobilized on silver nanoparticles bound to a self-assembled thiourea monolayer. Interaction of anti-MCLR and MCLR were directly detected by capacitance measurement. Under optimum conditions, MCLR could be determined with a detection limit of 7.0pgl(-1) and linearity between 10pgl(-1) and 1mugl(-1). The immobilized anti-MCLR on self-assembled thiourea monolayer incorporated with silver nanoparticles was stable and good reproducibility of the signal could be obtained up to 43 times with an R.S.D. of 2.1%. Comparing to the modified electrode without silver nanoparticles it gave 1.7-fold higher sensitivity and lower limit of detection. The developed immunosensor was applied to analyze MCLR in water samples and the results were in good agreement with those obtained by high-performance liquid chromatography (HPLC) (P<0.05).  相似文献   
6.
This study compared the responses of three enzyme reactors containing urease immobilized on three types of solid support, controlled pore glass (CPG), silica gel and Poraver. The evaluation of each enzyme reactor column was done in a flow injection conductimetric system. When urea in the sample solution passed though the enzyme reactor, urease catalysed the hydrolysis of urea into charged products. A lab-built conductivity meter was used to measure the increase in conductivity of the solution. The responses of the enzyme reactor column with urease immobilized on CPG and silica gel were similar and were much higher than that of Poraver. Both CPG and silica gel reactor columns gave the same limit of detection, 0.5 mM, and the response was still linear up to 150mM. The analysis time was 4-5 min per sample. The enzyme reactor column with urease immobilized on CPG gave a slightly better sensitivity, 4% higher than the reactor with silica gel. The life time of the immobilized urease on CPG and silica gel were more than 310h operation time (used intermittently over 7 months). Good agreement was obtained when urea concentrations of human serum samples determined by the flow injection conductimetric biosensor system was compared to the conventional methods (Fearon and Berthelot reactions). These were statistically shown using the regression line and Wilcoxon signed rank tests. The results showed that the reactor with urease immobilized on silica gel had the same efficiency as the reactor with urease immobilized on CPG.  相似文献   
7.
This paper presents a comparison between surface plasmon resonance (SPR) and capacitive immunosensors for a flow injection label-free detection of cancer antigen 125 (CA 125) in human serum. Anti-CA 125 was immobilized on gold surface through a self-assembled monolayer. Parameters affecting the responses of each system were optimized. Under optimal conditions, SPR provided a detection limit of 0.1 U ml−1 while 0.05 U ml−1 was obtained for the capacitive system. Linearity for SPR was between 0.1 and 40 U ml−1 and 0.05–40 U ml−1 for capacitive system. These immunosensors were applied to analyze CA 125 concentrations in human serum samples and compared with conventional enzyme linked fluorescent assay (ELFA). Both systems showed good agreement with ELFA (P < 0.05). Moreover, these immunosensors were very stable and provided good reproducible responses after regeneration, up to 32 times for SPR and 48 times for capacitive system with relative standard deviation lower than 4%. The SPR immunosensor provided advantages in term of fast response and real-time monitoring while capacitive immunosensor offered a sensitive and cost-effective method for CA 125 detection.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号