首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3992篇
  免费   328篇
  国内免费   2篇
  2024年   5篇
  2023年   43篇
  2022年   81篇
  2021年   162篇
  2020年   99篇
  2019年   130篇
  2018年   137篇
  2017年   127篇
  2016年   184篇
  2015年   245篇
  2014年   252篇
  2013年   310篇
  2012年   338篇
  2011年   373篇
  2010年   217篇
  2009年   163篇
  2008年   216篇
  2007年   230篇
  2006年   176篇
  2005年   133篇
  2004年   145篇
  2003年   116篇
  2002年   99篇
  2001年   33篇
  2000年   22篇
  1999年   23篇
  1998年   20篇
  1997年   10篇
  1996年   19篇
  1995年   14篇
  1994年   8篇
  1993年   10篇
  1992年   23篇
  1991年   13篇
  1990年   11篇
  1989年   13篇
  1988年   15篇
  1987年   12篇
  1986年   11篇
  1985年   7篇
  1984年   13篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1975年   6篇
  1973年   6篇
排序方式: 共有4322条查询结果,搜索用时 15 毫秒
1.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   
2.
Wild animal genetic resource banking (GRB) represents a valuable tool in conservation breeding programs, particularly in cases involving endangered species such as the golden‐headed lion tamarin (Leontopithecus chrysomelas). Thus, we aimed to assess a sperm freezing protocol for golden‐headed lion tamarins using two different exenders: BotuBOV® (BB) and Test Yolk Buffer® (TYB). Ejaculates were collected by penile vibrostimulation from animals housed at São Paulo Zoological Park Foundation, São Paulo, Brazil, and after immediate analysis, two aliquots were diluted in BB and TYB. Postthawing samples were evaluated for total and progressive motility, plasma membrane and acrosome integrities, mitochondrial activity, susceptibility to oxidative stress, and sperm–egg‐binding. No differences between BB and TYB were found for most seminal parameters, except for acrosome integrity and susceptibility to oxidative stress (in both cases BB showed higher values). However, in spite of these differences and regardless of the extender used, postthaw sperm motility and viability with the described protocol were encouraging (on average >50% and >80%, respectively), indicating that sperm cryopreservation may be a short‐term measure for the conservation of golden‐headed lion tamarins.  相似文献   
3.
4.
5.
Cost estimates have been prepared for commercial-scale production of ajmalicine-rich Catnaranthus roseus biomass using plant cell culture. At the current state of the technology the cost would be approximately $7.30/lb dry biomass ($3215/kg ajmalicine). Naturally-grown C. roseus roots have a 50% lower ajmalicine concentration but would cost only ca. $0.70/lb ($619/kg ajmalicine). The principal reason for the high cost of the plant cell culture route is not the slow specific growth rate (0.35 day(-1)), but rather the slow specific product accumulation rate (0.26 mg/g day). This rate will have to be increased by a factor of 40 to make the process competitive.  相似文献   
6.
Summary Several genes of the achaete-scute complex (ASC) of Drosophila melanogaster encode a 60 amino acids long conserved domain which shares a significant homology with a region of the vertebrate myc proteins. Based on these results, the existence of a family of Drosophila genes that would share both this conserved domain and the neurogenic function of the AS-C has been postulated. To test this proposal, we have searched a D. melanogaster genomic library with a probe that encodes the conserved domain. Only under very low stringency hybridization conditions, clones not belonging to the AS-C cross-hybridized with the probe. Those that gave the strongest signals were characterized. Sequencing of the cross-hybridizing regions showed that they had no significant homology with the conserved domain, the sequence similarity extending at the most for 37 nucleotides. Although our results do not conclusively disprove the existence of a family of AS-C-like genes, they indicate that the conservation of the domain would be lower than that found for shared motifs in other families of Drosophila developmental genes.  相似文献   
7.
We describe an atypical composite Ty1 element that apparently resulted from the concurrent integration of two complete elements. A portion of the central region of one of these elements was inverted between two long terminal repeats. Inversions of this type have been detected among unintegrated retroviral circles. It now appears that such intermediates can be incorporated into the genome.  相似文献   
8.
Glucose and glutamine are the main nutrients used by mammalian cells in culture. Each provides unique biosynthetic precursors but are complementary for production of other metabolites and energy. The transient and steady-state responses of hybridoma growth and metabolism to glucose pulse and step changes have been examined. Metabolic quotients are reported for oxygen, glucose, lactate, ammonia, glutamine, alanine, and other amino acids. The glucose consumption rate increased by 100-200% immediately after glucose was added to the reactor, and the increased glycolytic ATP production appears to be responsible for the concurrent rapid decrease in the oxygen consumption rate. The effects on glutamine consumption were delayed, probably due to buffering by the TCA cycle and interrelated pathways. A period of increased biosynthetic activity, as evidenced by an increase in the estimated specific ATP production rate and lower by-product yields from glutamine, preceded the increase in cell concentration after the glucose step change. The biosynthetic yield of cells from ATP was calculated, and it was estimated that maintenance accounted for about 60% of the energy used by the cells at a specific growth rate of 0.66 day(-1). The estimated 22% ATP production due to glycoysis was twice as great as that before the step change.  相似文献   
9.
In the multispecific DNA(cytosine-5)-methyltransferases (Mtases) of Bacillus subtilis phages SPR and phi 3T the domains responsible for recognition of DNA methylation targets CCA/TGG, CCGG, GGCC (SPR) and GCNGC, GGCC (phi 3T) represent contiguous sequences of approximately 50 amino acids each. These domains are tandemly arranged and do not overlap. They are part of a 'variable' segment within the enzymes which is flanked by 'conserved' amino acids, which are very similar amongst bacterial monospecific and the multispecific Mtases studied here. These results follow from a mutational analysis of the SPR and phi 3T Mtase genes. They further support our concept of a modular enzyme organization, according to which variability of type II Mtases with respect to target recognition is achieved by a combination of the same enzyme core with a variety of target-recognizing domains.  相似文献   
10.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号