首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   8篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   13篇
  2007年   6篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
排序方式: 共有119条查询结果,搜索用时 46 毫秒
1.
F1F0 ATP synthases use the electrochemical potential of H+ or Na+ across biological membranes to synthesize ATP by a rotary mechanism. In bacteria, the enzymes can act in reverse as ATP-driven ion pumps creating the indispensable membrane potential. Here, we demonstrate that the F0 parts of a Na+- and H+-dependent enzyme display major asymmetries with respect to their mode of operation, reflected by the requirement of ∼100 times higher Na+ or H+ concentrations for the synthesis compared with the hydrolysis of ATP. A similar asymmetry is observed during ion transport through isolated F0 parts, indicating different affinities for the binding sites in the a/c interface. Together with further data, we propose a model that provides a rationale for a differential usage of membrane potential and ion gradient during ATP synthesis as observed experimentally. The functional asymmetry might also reflect an important property of the ATP synthesis mechanism in vivo . In Escherichia coli , we observed respiratory chain-driven ATP production at pH 7–8, while P -site pH values < 6.5 were required for ATP synthesis in vitro . This discrepancy is discussed with respect to the hypothesis that during respiration lateral proton diffusion could lead to significant acidification at the membrane surface.  相似文献   
2.
To identify integral and peripheral membrane proteins, highly purified coated vesicles from bovine brain were exposed to solutions of various pH, ionic strength, and concentrations of the nonionic detergent Triton X-100. At pH 10.0 or above most major proteins were liberated, but four minor polypeptides sedimented with the vesicles. From quantitative analysis of phospholipids in the pellet and extract, we determined that at a pH of up to 12 all phospholipids could be recovered in the pellet. Electron microscopic examination of coated vesicles at pH 12.0 showed all vesicles devoid of coat structures. Treatment with high ionic strength solutions (0-1.0 M KCl) at pH 6.5-8.5 also liberated all major proteins, except tubulin, which remained sedimentable. The addition of Triton X-100 to coated vesicles or to stripped vesicles from which 90% of the clathrin had been removed resulted in the release of four distinct polypeptides of approximate Mr 38,000, 29,000, 24,000 and 10,000. The 38,000-D polypeptide (pK approximately 5.0), which represents approximately 50% of the protein liberated by Triton X-100, appears to be a glycoprotein on the basis of its reaction with periodic acid-Schiff reagent. Extraction of 90% of the clathrin followed by extraction of 90% of the phospholipids with Triton X-100 produced a protein residue that remained sedimentable and consisted of structures that appeared to be shrunken stripped vesicles. Together our data indicate that most of the major polypeptides of brain coated vesicles behave as peripheral membrane proteins and at least four polypeptides behave as integral membrane proteins. By use of a monoclonal antibody, we have identified one of these polypeptides (38,000 mol wt) as a marker for a subpopulation of calf brain coated vesicles.  相似文献   
3.
B Wiedenmann  W W Franke 《Cell》1985,41(3):1017-1028
A polypeptide of Mr 38,000 has been identified as a specific component of the membrane of presynaptic vesicles, using the monoclonal antibody SY38. This protein, which is acidic (isoelectric at approximately pH 4.8) and glycosylated, appears to be an integral membrane protein, as suggested by its solubilization with the nonionic detergent Triton X-100 and the finding that the epitope recognized by antibody SY38 is located on the cytoplasmic surface of those vesicles. It is found in presynaptic vesicles of neurons of the brain, spinal cord, and retina as well as at neuromuscular junctions. It is also found in the adrenal medulla. Its occurrence in diverse vertebrate species indicates its stability during evolution. This protein, for which we propose the name synaptophysin*, provides a molecular marker for the presynaptic vesicle membrane and may be involved in synaptic vesicle formation and exocytosis.  相似文献   
4.
H Rehm  B Wiedenmann    H Betz 《The EMBO journal》1986,5(3):535-541
Synaptophysin, a mol. wt 38 000 glycopolypeptide of the synaptic vesicle membrane, was solubilized using Triton X-100 and purified by immunoaffinity or ion-exchange chromatography. From gel permeation and sucrose-density centrifugation in H2O/D2O, a Stokes radius of 7.3 nm, a partial specific volume of 0.830 and a total mol. wt of 119 000 were calculated for the native protein. Cross-linking of synaptic vesicles with glutaraldehyde, dimethylsuberimidate, or Cu2+ -o-phenantroline, resulted in the formation of a mol. wt 76 kd dimer of synaptophysin. Crosslinking of the purified protein in addition produced tri- and tetrameric adducts of the polypeptide. Native synaptophysin thus is a homooligomeric protein. Synaptophysin is N-glycosylated, since cultivation of the rat phaeochromocytoma cell line PC12 in the presence of tunicamycin reduced its mol. wt by about 6 kd. Upon transfer to nitrocellulose and incubation with 45Ca2+, synaptophysin behaved as one of the major calcium-binding proteins of the synaptic vesicle membrane. Pronase treatment of intact synaptic vesicles abolished this 45Ca2+ binding indicating that the Ca2+ binding site of synaptophysin must reside on a cytoplasmic domain of the transmembrane polypeptide. Based on these data, we propose that synaptophysin may play an important role in Ca2+-dependent neurotransmitter release.  相似文献   
5.
Xanthopimpla stemmator (Thunberg)(Hymenoptera: Ichneumonidae), a solitary endoparasite of pupae of Old World lepidopteran stalkborers, was recently imported into Texas as a candidate for biological control of New World stalkborers. Information on host acceptability, host suitability and cues responsible for host finding were necessary to gain an insight into parasite/host interactions, because of the absence of a coevolutionary history.Xanthopimpla stemmator females were exposed to laboratory-reared one-to six-day-oldDiatraea saccharalis (F.) pupae. An average of 62% of host pupae were accepted and all ages of pupae were equally acceptable. Host suitability decreased with host age. One- to five-day-old host pupae averaged 31–37% suitability, whereas only 19% of 6-day-old pupae were suitable. Successful parasitization, defined as the product of the proportion accepted and the proportion suitable, decreased from 22–23% for 1-, 2- and 3-day-old pupae to 13% for 6-day-old pupae. Sex ratio (female:male) of the parasite progeny increased with host age. Females comprised 47% of total parasite progeny of 1-day-old and 84% of 6-day-old pupae. The increase in percent females was a result of a similar number of females in all age classes, coupled with a decrease in the number of males from older hosts.Xanthopimpla stemmator superparasitized 61% of acceptedD. saccharalis pupae in the laboratory. On dissection, 73% of host pupae with multiple probe wounds were found to contain parasite eggs or larvae; these hosts contained up to 10 eggs or 7 first-instar larvae. Increased numbers of probes by the parasites were associated with an increase in successful parasitization. Host seeking activity inX. stemmator was stimulated by the presence of larval frass, host odor and movement of host pupae. Results suggest thatX. stemmator is a good candidate for biological control ofD. saccharalis and possibly other factitious stalkborer hosts.  相似文献   
6.
7.

Benthic surveys are a key component of monitoring and conservation efforts for coral reefs worldwide. While traditional image-based surveys rely on manual annotation of photographs to characterise benthic composition, automatic image annotation based on computer vision is becoming increasingly common. However, accurate classification of some benthic groups from reflectance images presents a challenge to local ecologists and computers alike. Most coral reef organisms produce one or a combination of fluorescent pigments, such as Green Fluorescent Protein (GFP)-like proteins found in corals, chlorophyll-a found in all photosynthetic organisms, and phycobiliproteins found in red macroalgae, crustose coralline algae (CCA) and cyanobacteria. Building on the potential of these pigments as a target for automatic image annotation, we developed a novel imaging method based on off-the-shelf components to improve classification of coral and other biotic substrates using a multi-excitation fluorescence (MEF) imaging system. We used RGB cameras to image the fluorescence emission of coral and algal pigments stimulated by narrow-waveband blue and green light, and then combined the information into three-channel pseudocolour images. Using a set of a priori rules defined by the relative pixel intensity produced in different channels, the method achieved successful classification of organisms into three categories based on the dominant fluorescent pigment expressed, facilitating discrimination of traditionally problematic groups. This work provides a conceptual foundation for future technological developments that will improve the cost, accuracy and speed of coral reef surveys.

  相似文献   
8.
Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+- and Mg2+-permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS-1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose-stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS-1E cells.  相似文献   
9.
In different cell types, activation of signal transduction pathways leads to the generation of calcium oscillations and/or waves. Due to this important impact for cellular function, calcium waves are the subject of intensive investigations. To study interactions of cell organelles with no influence of the cell membrane, sarcoplasmic reticulum (SR) vesicles and well-coupled mitochondria were reconstituted. For the first time, we demonstrate the generation and propagation of calcium waves in a suspension of sarcoplasmic reticulum vesicles, embedded in an agarose gel. The propagation dynamics resemble those of calcium waves in living cells. Moreover, the addition of well-coupled mitochondria leads to more pronounced and significantly faster propagating waves, demonstrating the importance of the mitochondrial Ca(2+) transport. The experimental and simulation results indicate the resemblance of the in vitro system to an excitable medium.  相似文献   
10.
This electrophysiological study was undertaken to investigate the role of voltage-operated Ca(2+) channels (VOCCs) in cultivated human neuroendocrine tumor (NET) cells. Patch-clamp techniques, measurements of intracellular Ca(2+) ([Ca(2+)](i)), and secretion analysis were performed using cultured human NET BON cells. Ba(2+) inward currents through R-type channels (Ca(V)2.3) were measured and identified by SNX-482 (10 n M), a novel voltage-sensitive R-type Ca(2+) channel antagonist. In the presence of nifedipine (5 micro M), omega-Conotoxin GVIA (100 n M) and omega-Agatoxin IVA (20 n M), R-type channel currents were also detectable. Release of Ca(2+) from intracellular Ca(2+) stores by intracellular application of inositol-1,4,5-trisphosphate (InsP(3); 10 micro M) via the patch pipette during whole-cell configuration as well as induction of capacitative Ca(2+) entry (CCE), a passive maneuver to release Ca(2+) from intracellular Ca(2+) stores, led to an increase in [Ca(2+)](i). This effect could be reduced by SNX-482 (20 n M). In addition, SNX-482 (25 n M) also decreased chromogranin A (CgA) secretion, whereas omega-Conotoxin GVIA (500 n M) and nifedipine (5 micro M) failed to reduce CgA secretion. We conclude that these data reveal neuronal R-type channel activity (Ca(V)2.3), for the first time associated with CgA secretion in BON cells. Influx of Ca(2+) by activation of R-type channels may lead to an increase of intracellular Ca(2+), which stimulates CgA secretion. Thus, R-type channels could play an important role in certain clinical characteristics of NETs, such as the hypersecretion syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号